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1 Summary of the lectures

• Lecture 1. Wednesday, April 11, 2012. 15.15 - 16.15 and 16.30 - 17.30.

Introduction to Dynamic Optimization in discrete and continuous time: example of
utility maximization from static case to dynamic case.

Basic setting of Dynamic Optimization problems as Optimal Control (OC) problems
and as Calculus of Variation (CV) problems.

Definition of Admissible and Optimal Control Strategies, Admissible and Optimal
State Trajectories, Value Function.

Open Loop and Closed Loop Control Strategies: main ideas. Definition of Admissible
and Optimal Feedback Strategies. How to recover state trajectories and control
strategies from a given feedback map: Closed Loop Equation.

Examples of Dynamic Optimization in discrete and continuous time: optimal con-
sumption and optimal investment.

• Lecture 2. Thursday, April 12, 2012. 9.30 - 11 and 11.30 - 13.

The Dynamic Programming Method in the discrete time case: the Bellman equation
and its use to find the value function and the optimal strategies in feedback form.

The discounted infinite horizon case: new form of the Bellman equation Examples.
Some ideas in the continuous time case and in the stochastic case.

Exercises on Dynamic Programming Method in discrete time in finite and infinite
horizon.

• Lecture 3. Friday, April 13, 2012. 9.30 - 11 and 11.30 - 13.

The Dynamic Programming Method in the continuous time case: the Bellman equa-
tion and the Hamilton-Jacobi-Bellman equation and its use to find the value function
and the optimal strategies in feedback form.

Dynamic Optimization in discrete and continuous time: the Maximum Principle and
application to the main examples.

2 Readings

More economically oriented books are the following (in alphabetical order).

• Daron Acemoglu, (2009),

Introduction to Modern Economic Growth, Princeton University Press. Ch. 6, 7, 8
and 16.

• Alpha Chiang, (1992),

Elements of Dynamic Optimization, Waveland Press.
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• G. Gandolfo, (1991),

Economic Dynamics, Springer.

• A. Guerraggio, S. Salsa, Metodi Matematici per l’economia e le scienze
sociali, Giappichelli, 1997.

• D. Leonard and N. Van Long Optimal control theory and static optimization in
economic models, Cambridge University Press, 1992.

• L. Montrucchio, G. Cugno, Scelte intertemporali, Giappichelli Editore, 1998.

• Morton I. Kamien and Nancy L. Schwartz, (1991),

Dynamic Optimization, Elsevier, North-Holland.

• A. Seierstad and K. Sydsaeter, Optimal Control Theory with Economic
Applications. North Holland, Amsterdam, 1987.

• Nancy L. Stokey and Robert E. Jr. Lucas with Edward C. Prescott, (1989),

Recursive Methods in Economic Dynamics, Cambridge, MA: Harvard University
Press.

• A. Takayama, Mathematical Economics. Cambridge University Press, Cam-
bridge, New York, Melbourne, 1974.

More mathematically oriented books are the following (in alphabetical order).

• M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solu-
tions of Hamilton-Jacobi-Bellman Equations, Birkhauser, Boston, 1997.

• D. Bertsekas,Dynamic Programming. Princeton University press, Princeton, NJ,
1957.

• L. Cesari, Optimization Theory and Applications, Springer–Verlag, New
York, 1983

• W.H. Fleming and R.W.Rishel, Deterministic and stochastic optimal con-
trol, Springer, New York 1975.

• W.H. Fleming and H.M.Soner,Controlled Markov processes and viscosity
solutions, Springer-Verlag, Berlin, New-York, 1993.

• David Luenberger, (1969),

Optimization by Vector Space Methods, Wiley-Interscience

• L. Neustadt, Optimization, a Theory of Necessary Conditions, Princeton
University press, Princeton, NJ, 1976.
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• R.T. Rockafellar, Convex Analysis, Princeton University press, Princeton, NJ,
1976.

• J. Zabczyk, Mathematical control theory: an introduction, Birkäuser,
Basel, 1992.

• J. Yong, X.Y. Zhou, Stochastic Control Hamiltonian Systems and HJB
equations. Springer-Verlag, Berlin, New-York, 1999.

3 Introduction to dynamic optimization

Dynamic optimization problems are substantially optimization problems where the deci-
sions variables and other parameters of the problem possibly vary with time. In fact it
is not easy to give a formal definition of what dynamic optimization problems are: we
will not attempt to do it. In this note we will deal with a certain class of dynamic opti-
mization problems that arise in economic (and also in engineering, biology, finance, etc.)
applications.

3.1 An example: utility maximization

The problem of utility maximization is a well known problem in economic theory. It can
be formulated in a static context or in a dynamic context. We will consider a very simple
case from the economic point of view to illustrate the passage from the static to the
dynamic problem.

3.1.1 Static case

Let us start from the static problem in a simple case. Consider a consumer with an
initial amount of money x0 that can consume k differents good and want to maximize its
satisfaction from consumption without taking any debt. If c =(c1, ..., ck) is the vector of
(clearly nonnegative) consumed quantities, p = (p1, ..., pk) and U (c) is the satisfaction
from consumption (U0 : Rk

+ → R+, is usually concave and increasing in each component)
then the problem is the following

Maximize U0 (c) (1)

with the k + 1 constraints : c ≥ 0, 〈p, c〉 ≤ x0.

Its main ingredients are the objective function to maximize U0 and the constraints to be
respected.
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3.1.2 Dynamic case

A dynamic formulation of the above problem can be the following. The consumer may
spread the consumption over a certain period of time: this means that the consumption
vector c will become a time dependent vector, and so may do the price vector p. The set
of times where the decision of consumption may be taken is usually a subset T of the
positive half line R+ = [0,+∞). How to choose the subset T ? Usually one chooses an
initial time t0 and a final time T satisfying the obvious inequalities 0 ≤ t0 ≤ T ≤ +∞.
The final time T will be usually called the horizon of the problem: if T < +∞ we speak
of finite horizon problem, if T = +∞ we speak of infinite horizon problem. Then there
are two main possibilities:

• T = [t0, T ]∩N, i.e. the discrete time case. The name “discrete” may come from the
fact that, as a topological subspace of R, T is endowed with the discrete topology.
Usually one chooses the initial time in N and the final time in N∪{+∞}.

• T = [t0, T ]∩R, i.e. the continuous time case. The name “continuous” may come from
the fact that T is a set with cardinality ℵ1 (i.e. the cardinality of the continuum).

The consumption vector c is now a function c (·)
c (·) : T → Rk

: t → c (t)

the consumer will maximize an intertemporal utility from consumption. Under the usual
hypothesis of separability, a typical form of the intertemporal utility is

• in the case of discrete time (finite or infinite horizon T )

U1 (c (·)) :=
T∑

t=t0

βtU0 (c (t))

where β ∈ (0, 1) is a (discrete) discount factor (meaning that the consumer take less
satisfaction from a delayed consumption);

• in the case of continuous time (finite or infinite horizon T )

U1 (c (·)) :=
∫ T

t0

e−ρtU0 (c (t)) dt

where ρ ∈ (0,+∞) is a (continuous) discount factor (meaning again that the con-
sumer take less satisfaction from a delayed consumption: it is set differently from
the discrete time case for it is simpler to treat in this form when time is continuous).

Remark 3.1 Both the discount factors may be chosen differently: β ≥ 1 or ρ ≤ 0, arise
in some economic models (see e.g. [21]) meaning that future consumption is evaluated
more than (or equally to) the present one.
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Remark 3.2 Note that in the discrete time case the vector c (t) has the dimension of a
quantity and represents the amount of consumption over the period of time [t, t+ 1). In
the continuous time case, differently, c (t) has the dimension of a quantity over time and
represents the intensity of consumption at the time t: we may say that in the infinitesimal
amount of time [t, t+ dt) the consumed quantity is c (t) dt.

Consider now the constraints on the decision variable in the static case and try to
see how they transfer to the dynamic case. We consider for simplicity only the discrete
time case. The positivity constraints c ≥ 0 immediately transfer to

c (t) ≥ 0 ∀t ∈ T ,

with obvious meaning. The budget constraint 〈p, c〉 ≤ x0 is more difficult. In fact it needs
to be satisfied at any time t ∈ T but now the amount of money in the pocket of the
consumer vary with time. In the dicrete time case we have, assuming that the price vector
p is time independent

〈p, c (t0)〉 ≤ x0, 〈p, c (t0 + 1)〉 ≤ x0 − 〈p, c (t0)〉 ,
〈p, c (t0 + 2)〉 ≤ x0 − 〈p, c (t0)〉 − 〈p, c (t0 + 1)〉

and so on. In compact form we can write

〈p, c (t)〉 ≤ x0 −
t−1∑
s=t0

〈p, c (s)〉 , ∀t ∈ T .

Our dynamic optimization problem becomes then

Maximize U1 (c (·)) =
T∑

t=t0

βtU0 (c (t)) (2)

with the constraints :

c (t) ≥ 0 ∀t ∈ T , (3)

〈p, c (t)〉 ≤ x0 −
t−1∑
s=t0

〈p, c (s)〉 , ∀t ∈ T . (4)

The constraints above are very different. The first is static (or, say, “Markovian”) in

the sense that it does not involve neither relationship between the decision variables at
different periods, nor derivatives of the variables itself). The second one is dynamic (or,
say, “NonMarkovian”) in the sense that it does involve the values of the decision variables
at different times. This second on is more difficult to deal with. To get rid of such difficult
constraint we introduce the state variables in next section.
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3.1.3 The state variables

The dynamic optimization problem above is clearly more difficult than the static problem
(1). In particular the intertemporal budget constraint (4) is quite nasty since it involves
the values of c(t) at all times between the initial time t0 and the “current” time t. The
reason for this is the fact that there is a time evolution now and, in particular, the amount
of money available for the consumer vary with the time depending on the whole history
of the decisions variables.

We would like to transform such constraint in a more treatable one involving only
the “current” time t or, at most, t and its successive t+ 1.

To do this we introduce a new variable in the problem: the so called state variable
x (t) representing the amount of money available at the time t or, more precisely, at the
beginning of the t-th period, before the consumption c(t) takes place.

Remark 3.3 The name state variable comes from the following idea. We are dealing
with an economic system (the pocket of the consumer) evolving with time and we want
to describe it with a dynamic variable x(·) such that x(t) well explains the state1 of such
system at time t. The system can be modified by an agent using the decision variable
(called often the control variable) c(·) that also influences the state x(·) of the system.

Since x(t) is the amount of money in the pocket of the consumer at the beginning of
the t-th period it must be

x(t) = x0 −
t−1∑
s=t0

〈p, c (s)〉 , ∀t ∈ T . (5)

Note that, if T is finite it make sense to define also

x(T + 1) =
T∑

s=t0

〈p, c (s)〉 ,

which is the amount of money left in the pocket of the consumer at the end of the last
period. With this definition the constraint (4) becomes

〈p, c (t)〉 ≤ x(t), ∀t ∈ T . (6)

However such constraint can be rewritten in a more convenient way as follows. It can be
easily seen from (5) that

x(t+ 1) = x(t)− 〈p, c (t)〉 , ∀t ∈ T , (7)

with the agreement that, in the finite horizon case, for t = T , x(T +1) is defined as above.
So, requiring (6) is equivalent to require2

x(t+ 1) ≥ 0, ∀t ∈ T . (8)

1The terminology used here: system, state, etc. is probably borrowed from physics and engineering.
2Note that, taking account that x(t0) = x0 ≥ 0 this last constraint can be rewritten as

x(t) ≥ 0, ∀t ∈ T ∪ {T + 1}
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The last two constraints are enough to characterize the state variable x(·) and to include
the constraint (4). The end of the story is then the following. We introduce the state
variable

x(·) : T → R

as the unique solution of the difference equation (often called the state equation)

{
x (t+ 1) = x (t)− 〈p, c (t)〉 ∀t ∈ T ,

x (t0) = x0,

and we require it to satisfy the constraints

x (t+ 1) ≥ 0, ∀t ∈ T .

The problem (2) may now be rewritten as follows

Maximize U1 (c (·)) =
T∑

t=t0

βtU0 (c (t)) (9)

with the constraints :

c (t) ≥ 0 ∀t ∈ T , (PC1),

x (t) ≥ 0, ∀t ∈ T , (PC2),

{
x (t+ 1) = x (t)− 〈p, c (t)〉 ∀t ∈ T ,

x (0) = x0,
(SE).

Note that here we still have a dynamic constraint (the state equation). However such
constraint involve only the values of x(·) at the current time t and its successive t+1 (not
involving the whole history as in (4)) and it is used to define the evolution of the state
variable x(·). This makes it more treatable.

The above is a classical discrete time Optimal Control Problem (OCP) whose main
ingredients are:

• the functional U1 to maximize;

• the dynamic constraint (SE) involving both the state and control variable which is
formulated as a difference equation (which will be a differential equation in contin-
uous time) where the state variable is the unknown and the control variable is a
parameter to be chosen. This yields the name of state equation. and the acronym
(SE) used to denote it.

in the finite horizon case and
x(t) ≥ 0, ∀t ∈ T

in the infinite horizon case.
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• The static constraints (PC1) and (PC2) which involve the state and/or control
variable only at the current time t. Such constraints may involve only the control
variable (control constraints) as (PC1) or only the state variable (state constraints)
as (PC2) or both (state-control constraints). We will use the symbol (PC) (pointwise
constraints) to denote them.

3.1.4 The continuous time formulation

We can now provide the analogous continuous time formulation of the above problem.
The state equation describing the dynamic evolution of the state variable is now given by
an ordinary differential equation (ODE):

{
x′ (t) = −〈p, c (t)〉 ∀t ∈ T ,

x (t0) = x0,

while the pointwise constraints are unchanged. The problem then becomes

Maximize U1 (c (·)) =
∫ T

t0

e−ρtU0 (c (t)) dt

with the constraints :

c (t) ≥ 0 ∀t ∈ T , (control constraints),

x (t) ≥ 0, ∀t ∈ T , (state constraint),
{

x′ (t) = −〈p, c (t)〉 ∀t ∈ T ,
x (t0) = x0,

(state equation).

3.1.5 A special case: the Gale’s cake (cake eating)

The problem of the Gale’s cake (cake eating) is a special case of the above one. We consider
a cake to be consumed in the period [t0, T ]. The state variable x(t) is the amount of cake
remained. The control variable c (only one: here k = 1) is the amount of cake consumed
in the period [t, t+ 1). The precise formulation is then the same as above (see (9)) when
k = 1 and p = p = 1. Then

Maximize U1 (c (·)) =
T∑

t=t0

βtU0 (c (t))

with the constraints :

c (t) ≥ 0 ∀t ∈ T , (control constraint),

x (t) ≥ 0, ∀t ∈ T , (state constraint),
{

x (t+ 1) = x (t)− c (t) ∀t ∈ T ,
x (t0) = x0,

(state equation).
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Remark 3.4 Observe that in this case, differently from the one above, we may eliminate
the variable c in the optimization problem and simply maximize with respect to the state
variable x. In fact

c (t) = x (t)− x (t+ 1) ∀t ∈ T
and the control constraint c (t) ≥ 0 may be written

x (t)− x (t+ 1) ≥ 0, ∀t ∈ T ,

i.e. the sequence x is decreasing. Then the problem becomes

Maximize U2 (x (·)) :=
T∑

t=t0

βtU0 (x (t)− x (t+ 1)) (10)

with the constraints :

x (t)− x (t+ 1) ≥ 0 ∀t ∈ T ,

x (t) ≥ 0, ∀t ∈ T , (11)

x (0) = x0.

This formulation is the classical one for the problems of Calculus of Variation (CV). By
setting X = [0,+∞) and D (x) = [0, x] for every x ∈ X. we can rewrite the constraints
(11) in the form

x (t) ∈ X ∀t ∈ T ,

x (t+ 1) ∈ D (x (t)) ∀t ∈ T .

The optimization problem in the form (10) - (11) it is the standard problem studied in the
books of Montrucchio [29] and Stokey - Lucas [38].

Similarly we can provide the continuous time formulation of the Gale’s cake problem

Maximize U1 (c (·)) =
∫ T

t0

e−ρtU0 (c (t)) dt

with the constraints :

c (t) ≥ 0 ∀t ∈ T , (control constraint),

x (t) ≥ 0, ∀t ∈ T , (state constraint),

{
x′ (t) = −c (t) ∀t ∈ T ,
x (t0) = x0,

(state equation).
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Remark 3.5 Also in the continuous time Gale’s cake problem we may eliminate the
variable c in the optimization problem and simply maximize with respect to the state
variable x. In fact

c (t) = −x′ (t) , ∀t ∈ T
and the control constraint c (t) ≥ 0 may be written

x′ (t) ≤ 0, ∀t ∈ T ,

i.e. the function x is decreasing. Then the problem becomes

Maximize U2 (x (·)) :=
∫ T

t0

e−ρtU0 (−x′ (t)) dt

with the constraints :

x′ (t) ≤ 0 ∀t ∈ T ,

x (t) ≥ 0, ∀t ∈ T ,

x (0) = x0.

This formulation is the classical one for the problems of Calculus of Variation (CV) (see
e.g. [24]).

3.2 Optimal control problems

Optimal control problems (OCP) are more or less optimization problems, i.e. looking
for the maximum or minimum of certain functions, “coupled” with a control system.
By control system we mean a physical (or economic, or else) system whose behavior
is described by a state variable and that can be controlled from outside by an input
(or control) variable. Generally the state and control variable are required to satisfy an
ordinary differential equation (ODE) in the continuous time case or a difference equation
(DE) in the discrete time case. In optimal control one wants to optimize the behavior
of the system by maximizing or minimizing a given function of the state and control
variables. In most cases (but not all: an example are the problems with incentive, see e.g.
[13]) the controlled system evolves with time, so its behavior is described by an evolution
equation and we will call it a controlled dynamical system. The optimal control problem
in such cases is often called a dynamic optimization problem.

Here we want to deal with a class of optimal control problems that includes some
important economic examples. Main goal are:

- give an abstract formulation of a wide class of optimal control problems;
- give a brief outline of the main methods used to treat such problems.
- show how to apply such methods to some economic examples like the ones described

above.
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3.2.1 A general formulation

The state equation, the pointwise constraints and the set of admissible strate-
gies We fix T ∈ [0,+∞] (final time or horizon) and t0 ∈ [0, T ] (initial time). Then
we take two sets: C ⊆ Rk (the set of control variables) and X ⊆ Rn (the set of state
variables) and fix a point x0 ∈ X (the initial state). A control strategy will be a function
c(·) : T → C, (usually in the continuous case one requires at least local integrability of
c(·)) while a state trajectory will be a function x(·) : T → X (usually in the continuous
case x has to be continuous). Given the control strategy c(·) the state trajectory is de-
termined by a state equation (SE) which describes the time evolution of the system. We
consider state equation of the following kind: given a map fD : T ×X ×C 7→ X (discrete
time case) or fC : T × X × C 7→ Rn (continuous time case), and a control strategy c(·)
the state trajectory is the unique solution3 of the difference equation (in the discrete time
case) {

x(t+ 1) = fD(t, x(t), c(t));
x(t0) = x0

t ∈ T = [t0, T ] ∩ N
x0 ∈ X ⊆ Rn,

or of the ODE (in the continuous time case)

{
x′(t) = fC(t, x(t), c(t));
x(t0) = x0

t ∈ T = [t0, T ] ∩ R
x0 ∈ X ⊆ Rn.

This is what is called a controlled dynamical system. The unique solution of the SE, given
the initial data (t0, x0) and the control strategy c(·) will be denoted by x (·; t0, x0, c(·)) or
simply by x (·) when no confusion may arise.

Moreover we consider some additional pointwise (or static) constraints (PC) on the
state-control variables. Given two functions g : T ×X×C → Rp and h : T ×X×C → Rq

we ask that
g (t, x(t), c (t)) ≤ 0, ∀t ∈ T , (12)

and
h (t, x(t), c (t)) ≤ 0, ∀t ∈ T1 ⊂ T .

The difference is that the first constraints hold for every time, while the second hold only
for certain times (tipically the last one).

3Of course this means that suitable assumptions on the dynamics fD or fC are needed to ensure
existence and uniqueness of solutions. For the discrete time case it is enough to ask that fD take values in
X, as written above. A standard assumptions for the continuous case is that fC is continuous and there
exists a constant M > 0 such that

||fC (t, x, u)||Rn ≤ M (1 + ||x||Rn + ||u||Rk)

∀ (t, x, u) ∈ T ×X × U and

||fC (t, x1, u)− f (t, x2, u)||Rn ≤ M ||x1 − x2||Rn

∀ (t, u) ∈ T × U and x1, x2 ∈ X.
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The set of all control strategies c such that the associated state-control couple (c(·), x (·; t0, x0, c))
satisfy all the above given constraints will be called the set of admissible strategies and de-
noted by the symbol Cad (t0, x0) underlying its dependence on the initial data. In symbols,
for the discrete time case:

Cad (t0, x0) =

{
c(·) : T → C such that x (t) ∈ X and g (t, x(t), c (t)) ≤ 0, ∀t ∈ T ;

h (t, x(t), c (t)) ≤ 0, ∀t ∈ T1 ⊂ T
}
;

for the continuous time case the only difference is that one requires some regularity on
c(·). A typical case is when we ask local integrability:

Cad (t0, x0) =

{
c(·) ∈ L1

loc (T ;C) such that x (t) ∈ X and g (t, x(t), c (t)) ≤ 0, ∀t ∈ T ;
h (t, x(t), c (t)) ≤ 0, ∀t ∈ T1 ⊂ T

}
.

Remark 3.6 Observe that the sets X and C may also be defined by constraints like (12).
So one may always decide to keep X = Rn and C = Rk. This depends on the single
problem.

The objective function The objective of the problem is to maximize a given functional
J (t0, x0; c(·)) 4 over the set the admissible strategies. In general J will be defined on a
greater set C of control strategies (e.g. C = L1

loc (T ;C) in a typical continuous time case or
C = CT in a typical discrete time case) but the interest is limited to Cad. We now provide
a class of functionals that is commonly used. Two functions

f0 : T ×X × C → R,

φ0 : X → R
(usually at least measurable) are given, denoting respectively the instantaneous perfor-
mance index of the system and the payoff from the final state5. The typical functionals
are given below separating the various cases.

• In the discrete time case a typical form of the functional to maximize is

J (t0, x0; c(·)) =
T∑

t=t0

f0 (t, x (t) , c (t)) + φ0(x(T + 1))

for the finite horizon case6 and

J (t0, x0; c(·)) :=
+∞∑
t=t0

f0 (t, x (t) , c (t))

4We write in this way to underline the dependence on initial parameters. The control variables are
separated from the parameters by a ; sign.

5The term φ0 measuring the payoff from the final state is not usually considered in the infinite horizon
case

6Note that, as in the example of utility maximization, x(T +1) is the value of the state variable after
the end of the control period and is defined by the state equation when t = T .
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for the infinite horizon case. Tipically in the infinite horizon case the function f0 is
of the form

f0 (t, x (t) , c (t)) = βtf1 (x (t) , c (t))

where β ∈ (0,+∞) is a (discrete) discount factor and f1 : X × C → R is given.

• in the continuous time case

J (t0, x0; c(·)) =
∫ T

t0

f0(t, x(t), c(t)dt+ φ0(x(T ))

for the finite horizon case and

J (t0, x0; c(·)) :=
∫ +∞

t0

f0 (t, x (t) , c (t)) dt

for the infinite horizon case. Tipically in the infinite horizon case the function f0 is
of the form

f0 (t, x (t) , c (t)) = e−ρtf1 (x (t) , c (t))

where ρ ∈ R is a (continuous) discount factor and f1 : X × C → R is given.

The problem is then

(P ) Maximize J(t0, x0; c)

over c ∈ Cad (t0, x0)

Remark 3.7 Often, given an OCP arising in an economic model in discrete time, one
is interested to find the “equivalent” continuous time problem (or viceversa). In this case:

• First one has to be careful about the meaning of the word “equivalent”. In fact passing
from discrete time to continuous time always significatively alter the results on the
model (see e.g. the discussion in [14]).

• Second, if the SE in the discrete case is

x(t+ 1) = fD(t, x(t), c(t))

then the analogous contuinuous time SE is

x′ (t) = fD(t, x(t), c(t))− x (t)

so fC(t, x, c) = fD(t, x, c) − x and the control variable change its dimensionality
(see Remark 3.2). In fact the discrete time analogous of the derivative x′ (t) is the

incremental ratio x(t+1)−x(t)
1

along the “informal” steps

x(t+ 1)− x(t)

1
−→ x(t+∆t)− x (t)

∆t
−→ x′ (t)
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so we may write, again informally

x(t+ 1) = fD(t, x(t), c(t)) −→ x(t+ 1)− x (t) = fD(t, x(t), c(t))− x (t)

−→ x(t+ 1)− x(t)

1
= fD(t, x(t), c(t))− x (t)

−→ x′ (t) = fD(t, x(t), c(t))− x (t)

Remark 3.8 We always consider maximization problem here. Recalling that, for a given
function F

maxF = −min (−F )

we can treat with the same ideas also minimization problems.

3.2.2 Some useful definitions and remarks

Let us give two useful definitions.

Definition 3.9 A control strategy c∗(·) ∈ Cad (t0, x0) is an optimal control strategy at the
starting point (t0, x0) if J (t0, x0; c

∗(·)) ≥ J (t0, x0; c(·)) for every other admissible strategy
c(·) ∈ Cad (t0, x0). The corresponding state trajectory x (·; t0, x0; c

∗) is an optimal state
trajectory and will be often denoted simply by x∗(·). The state-control couple (x∗(·), c∗(·))
will be called an optimal couple.

Definition 3.10 The value function of the problem (P ) is defined as7

V (t0, x0)
def
= sup

c∈Cad(t0,x0)

J (t0, x0; c(·)) .

Remark 3.11 We observe that the definition of optimal control strategy at (t0, x0) make
sense if we know that the value function is finite at that point. Of course, it can happen
that v = +∞ or −∞. This is the case for example in many problems with infinite horizon
arising in economic applications, including also the example in subsection (4.1) for some
values of the parameters. In these cases one has to introduce a more general concept
of optimality (see e.g. [37, Section 3.7] or [27, Ch. 9]). We avoid to treat this case for
simplicity.

We will then work with the following assumption.

Hypothesis 3.12 The value function V is always finite.

7Such function depends also on the horizon T but, for our purposes we underline only its dependence
on the initial data (t0, x0).
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Remark 3.13 This is guaranteed for example in the discrete time finite horizon case
when we know that Cad (t0, x0) 6= ∅ for every (t0, x0) ∈ T ×X. In the discrete time infinite
horizon case we have also to ask that, for example:

• the series in J is always regular and J (t0, x0; c(·)) < +∞ for every c(·) ∈ Cad (t0, x0)
(is never divergent to +∞);

• for every R > 0 there exists a constant CR > 0 such that

J (t0, x0; c(·)) ≤ CR ∀ (t0, x0) with |x0| ≤ R, ∀c(·) ∈ Cad (t0, x0) .

The first conditions is necessary to have the value function finite. The second is
sufficient but not necessary.

Remark 3.14 If we consider the discrete time discounted infinite horizon problem where
f0 = βtf1 and fD, g are autonomous, so

J (t0, x0, c (·)) =
+∞∑
t=0

βtf1 (x (t) , c (t)) dt

with state equation
{

x(t+ 1) = fD(x(t), c(t));
x(t0) = x0

t ∈ T = [t0,+∞)
x0 ∈ X ⊆ Rn,

(13)

and constraints
x (t) ∈ X, c (t) ∈ C, ∀t ∈ T
g (x (t) , c (t)) ≤ 0, ∀t ∈ T ,

then we have that, for every (t0, x0) ∈ T ×X

V (t0, x0) = βt0V (0, x0) .

So in this case it is enough to know the function V0 (x0) = V (0, x0) to calculate the value
function.

Similarly, in the continuous time case with discounted infinite horizon, if where f0 =
eρtf1 and fC, g are autonomous, we have

V (t0, x0) = eρt0V (0, x0) .

So also in this case it is enough to know the function V0 (x0) = V (0, x0) to calculate the
value function.

Now let say two words about the main goals we have in studying a control problem.
This depends of course on the nature of the problem. Usually, in problems arising in
economics one is interested in calculating, or at least study the properties, of optimal
state-control trajectories (x(·), c(·)) starting at a given point (t0, x0). In particular, in
studying problems of growth theory, the time horizon T is set equal to +∞ and the
main interest are the asymptotic properties of optimal trajectories (plus their rate of
convergence).
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Remark 3.15 We observe that in the above formulation we considered the functional J
depending only on the control c and on the initial data (t0, x0). Of course we could also see
J as a functional defined on the state control couple (x(·), c(·)) satisfying the equation (13)
as a constraint. This formulation can be useful in some case, in particular in looking for
optimality conditions. In fact in this way the optimal control problem (P ) takes the form
of a constrained optimization problem in infinite dimension and optimality conditions can
be found by using a generalized multiplier rule, in analogy with the finite dimensional case.
For example, if we consider the case of discrete time infinite horizon with autonomous
constraints, h = 0, t0 = 0 and discounted objective functional, then we could write the
problem (P ) as follows.

Maximize the functional

J (x (·) , c (·)) =
+∞∑
t=0

βtf1 (x (t) , c (t)) dt

under the constraints

x (t) ∈ X, c (t) ∈ C, ∀t ∈ T ,





x (t+ 1) = fD (x (t) , c (t)) , ∀t ∈ T ,
x (0) = x0,
g (x (t) , c (t)) ≤ 0, ∀t ∈ T ,

This may be seen as a standard form of the problem (P ) in the calculus of variation (CV)
setting. Moreover, by eliminating, if possible8 the control variables, the problem may be
rewritten in the form (see [29], [38])

(P1) Maximize the functional

J (x0, x (·)) =
+∞∑
t=0

βtf2 (x (t) , x (t+ 1)) dt

under the constraints

x (t) ∈ X ∀t ∈ T ,

x (0) = x0

x (t+ 1) ∈ D (x (t)) ∀t ∈ T .

where the multivalued application D : X → X (which can be seen as an application
D : X → P (X) where P (X) denotes the set of all subsets of X) can be defined as

D (x) = {y ∈ X : ∃c ∈ C with y = fD (x, c) and g (x, c) ≤ 0} .

8In fact this is always possible eventually adding new state variables to the problem.
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3.2.3 Feedback control strategies

The concept of feedback strategy plays a crucial role in optimal control theory. The idea
of feedback is just the one of looking at the system at any time t ∈ T , observe its state
x (t) and then choose in real time the control strategy c (t) as a function of the state (and
maybe of the time) at the same time, so that

c (t) = G (t, x (t))

for a suitable map G : T ×X → C. A key point is that the form of G does not depend on
the initial time and state, this is more or less obvious in the philosophy of “controlling in
real time”. To be more precise we introduce the following concepts.

Definition 3.16 A function G : T × X → C is called an admissible feedback map for
problem (P ) if, for any initial data (t0, x0) the closed loop equation, which is

{
x (t+ 1) = fD (t, x (t) , G (t, x (t))) ; ∀t ∈ T
x (t0) = x0

for the discrete time case and

{
x′ (t) = fC (t, x (t) , G (t, x (t))) ; ∀t ∈ T
x (t0) = x0

for the continuous time case, admits a unique solution9 denoted by x (·; t0, x0, G) and the
corresponding control strategy

c(t0,x0,G) (t) = G (t, x (t; t0, x0, G)) ∀t ∈ T

is admissible, i.e. it belongs to Cad (t0, x0).

An admissible control strategy for problem (P ) is usually called an “open loop” control
strategy. An admissible feedback map G will be called “closed loop” control strategy.

Definition 3.17 An admissible feedback map G is optimal for problem (P ) if, for every
initial data (t0, x0) the state-control couple

(
x (·; t0, x0, G) , c(t0,x0,G)(·)

)
is optimal in the

sense of Definition 3.9.

Remark 3.18 It is possible to study the control problem (P ) by restricting the admissible
strategy only to closed loop strategies G with a given regularity. In general this would
restrict the set of admissible control strategies, but in many cases the supremum is the
same, so it is equivalent to look for optimal open loop or closed loop strategies. We do not
go deep into this point, observing only that, given a problem (P ), if we show that there
exists an optimal feedback strategy, we have in fact proven the equivalence. This will be
an outcome of Dynamic Programming Method in Section 6.

9This obvious in discrete time, much less obvious in continuous time.
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Remark 3.19 Observe that, if we know the optimal strategy in closed loop form we are
able to control the system in real time without knowing the real input map c(t0,x0,G) (·).
In fact it is enough to know G and to put a “feedback device” that reads the state x (t)
and give the value c (t) at any time t. This is a common technique in many real systems
(especially in engineering).

Remark 3.20 The two philosophies of open loop and closed loop control strategies are
substantially different mostly for their different use of the information. Looking for open
loop strategies means that at the starting point we look at the problem, assuming to have
a perfect foresight on the future and we choose once for all the optimal strategy without
changing it. On the other side, looking for closed loop strategies means that we adjust at
any time our policy, depending on our observation of the system. This is clearly a better
policy in the sense of the use of information and we have equivalence of the two methods
if we are in a deterministic world with perfect foresight. See [22] for more considerations
on this.

4 Examples: discrete time case

4.1 Example 1: utility maximization

We consider an agent (tipically called the “consumer”) that have his/her money in the
bank at a fixed interest rate r > 0 and that uses them to “consume” at every time
a quantity c (t) that he can choose at any time t ∈ T := [0, T ] ∩ N where T is the
time horizon of the agent (e.g. life expectance), T ∈ [0,+∞]. This means that, denoting
by k (t) the amount of money at time t ∈ T and by k0 the initial amount of money,
the function k : T → R satisfies the following difference equation (which we call state
equation considering k as the state variable of the system)

k(t+ 1) = (1 + r) k(t)− c(t), t ∈ [0, T ] ; k(0) = k0. (14)

Of course for any given control strategy c there exists a unique solution of equation (14)
that we denote by k (·; k0, c).

Moreover we assume for simplicity that no borrowing is allowed, so also k (t) ≥ 0
at any t ∈ T . To model the behavior of this consumer we suppose that she/he wants to
maximize a certain function U (which should measure the satisfaction of the agent) of
the consumption path c (·) up to the time horizon T ∈ [0,+∞]. Usually such function U
(called the intertemporal discounted utility from consumption) is given by

U(k; c) =
T∑
t=0

βtu (c (t)) + βtφ (k (T + 1)) , for T < +∞

U(c) =
+∞∑
t=0

βtu (c (t)) , for T = +∞
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where β ∈ (0, 1) is the so-called subjective discount rate of the agent, while u : [0,+∞) 7→
R+ is the instantaneous utility from consumption and φ : [0,+∞) → R+ is the utility from
the remaining capital stock. We recall that the functions u and φ are generally choosen
strictly increasing, concave (for economic reasons) and two times differentiable (for sim-
plicity reasons). The standard choice of u is the so-called C.E.S. (Constant Elasticity of
Substitution) utility function which is given by

uσ (c) =
c1−σ − 1

1− σ
for σ > 0, σ 6= 1

u1 (c) = ln c for σ = 1.

(we observe that, in the case σ > 0, σ 6= 1 one generally drops for simplicity the constant
(1− σ)−1 in the function uσ, without changing the optimal strategies of the problem).

Summarizing, for the case T = +∞, we have the following maximization problem
(P ): fixed the initial endowment k0, we maximize the intertemporal discounted utility

Uσ(c) =
+∞∑
t=0

βtuσ (c (t))

over all consumption strategies c ∈ C(k0) where

C(k0) =
{
c ∈ RT : c (t) ≥ 0, k(t; k0, c) ≥ 0 ∀t ∈ T }

(i.e. c admissible starting at k0). The value function of the problem is:

V (k0) = sup
c(·)∈A(k0)

+∞∑
t=0

βtuσ (c (t)) .

Remark 4.1 This problem has also an important meaning as a macroeconomic model
where the agent is a representative agent of a certain community (see [6]). In this case
the equation for the capital stock (i.e. the “state” equation) is substituted by the more
general one

k(t+ 1) = F (k(t)) + (1− δ) k (t)− c(t), t ∈ T ; k(0) = k0. (15)

where F (k) stands for the production function of the model (usually increasing and con-
cave) and δ is the capital’s depreciation factor (see e.g. [29, Chapter 1]).

Exercise 4.2 Write this last problem in the standard form, identifying the functions fD,
f0, f1 and g. Show that in this case the problem can be written in the form (P1) in Remark
3.15. Write it in such form identifying the function f2 and the set D.
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4.2 Example 2: optimal investment

Consider the following problem of optimal investment. The equation describing the capital
accumulation process is

{
k(t+ 1) = (1− µ) k(t) + I(t);
k(0) = k0

t ∈ N
k0 ∈ R+

where k(t) represents the capital stock at time t, I(t) the investment at time t (i.e in the
period [t, t+ 1)) and µ is the depreciation factor of capital. We assume that k (t) ≥ 0 for
every t ∈ N while I ∈ [I1, I2] may also be negative (no irreversibility of investments). The
objective is to maximize the intertemporal profit

J(k0; I) =
+∞∑
t=0

βt [F (t, k(t))− C(t, I(t))]

over all control strategies I belonging to the admissible set

Iad (k0) = {I : N→ R : I (t) ∈ [I1, I2] and k (t; 0, k0, I) ≥ 0 ∀t ∈ N} .
Here β is the intertemporal discount factor (if we are taking simply the profit then we
should take β = 1 + r, where r is the interest rate). The function F (t, k) give the profit
at time t when the capital stock is k. The function C (t, I) gives the cost at time t of
the investment I. To simplify things we may assume that F is linear (constant returns
to scale) and autonomous so that F (t, k) = F (k) = ak (a will be called “coefficient of
production”) and that C is quadratic and autonomous so C(t, I) = C (I) = bI + cI2

(the linear part give the unit cost while the quadratic ones give the so-called adjustment
costs). The objective functional becomes then

J(k0; u) =
+∞∑
t=0

βt
[
ak(t)− bI(t)− cI2(t)

]
dt

and the value function is defined as

V (k0) = sup
I∈Uad

J(k0; I).

Exercise 4.3 Write this last problem in the standard form, identifying the functions fD,
f0, f1 and g. Show that in this case the problem can be written in the form (P1) in Remark
3.15. Write it in such form identifying the function f2 and the set D.

4.3 Example 3: three finite horizon problems of optimal con-
sumption

1. State equation:
{

k(t+ 1) = k (t) (1− c (t)) ;
k(t0) = k0

t ∈ [t0, T ] ∩ N
k0 ≥ 0
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Maximize (α ∈ (0, 1), a > 0):

J(t0, k0; c(·)) =
T−1∑
t=t0

[c (t) k(t)]α + ak(T )α

2. State equation (α ∈ (0, 1)):

{
k(t+ 1) = k (t)α − c (t) ;
k(t0) = k0

t ∈ [t0, T ] ∩ N
k0 ≥ 0

Maximize (β ∈ (0, 1), b > 0)

J(t, k0; c(·)) =
T−1∑
t=t0

βt ln c (t) + bk(T )α.

3. Gale’s cake problem with utility (α ∈ (0, 1))

U0 (c) =
cα

α

Exercise 4.4 Consider these three problems with t0 = 0 and T = 1. Then find the optimal
couple and the value function using the Kuhn-Tucker method.

Consider these three problems with t0 = 0 and T = 2. Then find the optimal couple
and the value function using the Kuhn-Tucker method.

5 Examples: continuous time case

5.1 Example 1: utility maximization

We consider an agent (tipically called the “consumer”) that have his/her money in the
bank at a fixed interest rate r > 0 and that uses them to “consume” at a certain rate c (t)
that he can choose at any time t ∈ [0, T ] where T is the time horizon of the agent (e.g.
life expectance), T ∈ [0,+∞]. This means that, denoting by k (t) the amount of money
at time t ∈ [0, T ] and by k0 the initial amount of money, the function k :∈ [0, T ] 7−→ R
satisfies the following differential equation (which we call “state” equation considering k
as the state variable of the system)

k̇(t) = rk(t)− c(t), t ∈ [0, T ] ; k(0) = k0. (16)

Of course we have to set some constraints on this equation: the consumption rate c(t)
needs to be nonnegative and such that the above equation (16) is solvable: so we assume
that c ∈ L1

loc(0,+∞;R) : c ≥ 0 a.e.. This guarantees that for any c of this kind there exists
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a unique solution of equation (16) (see e.g. [42]) that we denote by k (·; k0, c). Recall that
L1
loc(0,+∞;R) is the space of all functions f : (0,+∞) → R that are integrable on all finite

intervals. Generally in Economic models one considers less general control strategies, e.g.
continuous except for a finite number of points. However, choosing such set of admissible
strategies would create technical problems (e.g. non existence of optimal strategies). For
this reason we choose to work in this more general setting.

Moreover we assume for simplicity that no borrowing is allowed, so also k (t) ≥ 0
at any t ≥ 0. To model the behavior of this consumer we suppose that he/she wants to
maximize a certain function U (which should measure the satisfaction of the agent) of
the consumption path c (·) up to the time horizon T ∈ [0,+∞]. Usually such function U
(called the intertemporal discounted utility from consumption) is given by

U(k; c) =

∫ T

0

e−ρtu (c (t)) dt+ e−ρTφ (k (T )) , for T < +∞

U(c) =

∫ +∞

0

e−ρtu (c (t)) dt, for T = +∞
where the function ρ > 0 is th so-called discount rate of the agent, while u : [0,+∞) 7→ R+

is the instantaneous utility from consumption and φ : [0,+∞) 7→ R+ is the utility from
remaining capital stock. We recall that the functions u and φ are generally choosen strictly
increasing, concave (for economic reasons) and two times differentiable (for simplicity rea-
sons). The standard choice of u is the so-called C.E.S. (Constant Elasticity of Substitution)
utility function which is given by

uσ (c) =
c1−σ − 1

1− σ
for σ > 0, σ 6= 1

u1 (c) = log c for σ = 1.

(we observe that, in the case σ > 0, σ 6= 1 one generally drops for simplicity the constant
(1− σ)−1 in the function uσ, without changing the problem).

Summarizing, for the case T = +∞, we have the following maximization problem
(P ): fixed the initial endowment k0, we maximize the intertemporal discounted utility

Uσ(c) =

∫ +∞

0

e−ρtuσ (c (t)) dt

over all consumption strategies c ∈ A(k0) where

A(k0) =
{
c ∈ L1

loc(0,+∞;R) : c ≥ 0 a.e.; k(·; k0, c) ≥ 0 a.e.
}

(i.e. c admissible starting at k0).

Remark 5.1 This problem has also an important meaning as a macroeconomic model
where the agent is a representative agent of a certain community (see [6]). In this case
the equation for the capital stock (i.e. the “state” equation) is substituted by the more
general one

k̇(t) = F (k(t))− c(t), t ∈ [0, T ] ; k(0) = k0. (17)

where F (k) stands for the production function of the model (generally linear or concave).
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5.2 Example 2: optimal investment

Consider a firm that produces goods using a certain amount of capital stock k (i.e. the
machines used for production or the cattle). A first model of the evolution of the stock k
can be the following

k̇(t) = I(t)− µk(t), k(0) = k0, (18)

where µ is the decay rate of capital (i.e. the machines become older and can broke) while
I is the investment rate. The firm can choose the investment strategy respecting some
constraints. For example we assume that I ∈ L1

loc(0,+∞;R) and that, calling k (·; k0, I)
the corresponding unique solution of (18) we have k (t; k0, I) ≥ 0 for every t ≥ 0 (note
that we allow for negative investments). We model the behavior of the firm assuming that
it wants to maximize the discounted profit Π over a fixed time horizon T ∈ [0,+∞]

Π(k; I) =

∫ T

0

e−rtf0(k (t) , I (t))dt+ e−rTf1 (k (T )) , for T < +∞

Π(k; I) =

∫ +∞

0

e−rtf0(k (t) , I (t))dt, for T = +∞

where r > 0 is the interest rate (that we assume to be constant for simplicity), f0(k, I)
gives the istantaneous profit rate for given levels of capital stock and investment rate and
f1 (k) gives the profit for keeping a quantity of capital k at the end of the period (e.g. the
market value of it).

A typical example of function f0 is

f0(k, I) = f01(k)− f02(I)

where f01 ∈ C2 ([0,+∞)) is strictly increasing and concave and f02 ∈ C2 (R) is strictly
concave and superlinear (i.e. limI→+∞ f02(I)/|I| = +∞). This is the classical optimal
investment problem with adjustment costs:

maxΠ(k; I) = max

∫ +∞

0

e−ρt[f01(k(t))− f02(I(t))]dt,

k̇(t) = I(t)− µk(t), k(0) = k0,

subject to the usual constraint k ≥ 0 (for a discussion see e.g. [40, Ch. 8.E]).

6 Dynamic programming

The departure point of dynamic programming (DP) method is the idea of embedding a
given optimal control problem (OCP) into a family of OCP indexed by the initial data
(t0, x0). This means that we keep the horizon T fixed and we let the data (t0, x0) vary

10.

10In ([0, T + 1] ∩ N) × X in the discrete time case and in in ([0, T ] ∩ R) × X in the continuous time
case.
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and look at the relationship between such family of problems in the same spirit of the
so-called envelope theorem in static optimization.

The core of such relationship can be summarized in the following sentence: “The
second part of an optimal trajectory is still optimal”. This has probably been the first
statement of the so-called Bellman’s Optimality Principle, formulated in the ’50’s, which
is the departure point of DP. For an history of dynamic programming method one can
see e.g. [43] or [4], [11]. Here we recall the main ideas and statements.

The main idea of DP is the following. First state precisely the relationship between
problems with different data (the Bellman’s Optimality Principle). Then use these rela-
tionship (eventually in a modified form: this happens especially in the continuous time
case where the infinitesimal form is studied) to get information about optimal control
strategies. The key tool to find these relationship is the value function of the problem, see
Definition 3.10. For a detailed discussion of DP with proofs see e.g , [11] for the discrete
time case. and [42], [43] for the continuous time case.

Before to pass to precise statements of theorems we give an outline of the main ideas
of dynamic programming. The list is purely a rough indication.

1. Define the value function of the problem as in Definition 3.10: this is a function of
the initial time and the initial state (t0, x0).

2. Find a functional equation for V , the so-called Bellman equation, which is always
satisfied by V (Theorem 1).

3. Find a solution v, if possible, of the Bellman equation and prove that such solution
is the value function V .

4. Characterize optimal solution in terms of the value function (Theorem 6.4).

5. Use this characterization to find a feedback optimal map and so, via the closed loop
equation, the optimal couples.

Practically, of course, step 1 is just a definition, step 2 is an application of Bellman’s
principle which very often satisfied. Step 4 is a direct application of known theorems,
so the job there is to check if suitable hypotheses are verified. Steps 3 and 5 involve
computations that are some times easy, sometimes simply impossible.

6.1 The discrete time case

Let us start from the following

Theorem 1 (Bellman equation). Let Hypothesis 3.12 hold for problem (P ). Then for
every (t0, x0) ∈ ([0, T ] ∩ N)×X and τ ∈ [t0, T ] we have

V (t0, x0) = sup
c∈Cad(t0,x0)

{
τ∑

s=t0

f0 (s, x (s; t0, x0, c (·)) , c (s)) + V (τ + 1, x (τ + 1; t0, x0, c (·)))
}

(19)
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or, equivalently,

V (t0, x0) = sup
c(·)∈Cad(t0,x0)

{f0 (t0, x0, c (t0)) + V (t0 + 1, x (t0 + 1; t0, x0, c (·)))} = (20)

sup
c(·)∈Cad(t0,x0)

{f0 (t0, x0, c (t)) + V (t0 + 1, fD (t0, x0, c (t0)))}

sup
c∈C(t0,x0)

{f0 (t0, x0, c) + V (t0 + 1, fD (t0, x0, c))}

where we have set

C (t0, x0) = {c ∈ C : ∃c (·) ∈ Cad (t0, x0) with c (t0) = c}

Proof. We provide the proof of (20) in the finite horizon case. The others are similar.
By definition the value function at a given point (t0, x0) is

V (t0, x0)
def
= sup

c∈Cad(t0,x0)

{
T∑

t=t0

f0 (t, x (t) , c (t)) + φ0 (x (T + 1))

}

then, by splitting the sum

V (t0, x0) = sup
c∈Cad(t0,x0)

{
f0 (t0, x0, c (t0)) +

T∑
t=t0+1

f0 (t, x (t) , c (t)) + φ0 (x (T + 1))

}
.

Now observe that, for any c(·) ∈ Cad (t0, x0), the strategy c(·)|[t0+1,T ]∩N (i.e. c(·) re-
stricted over the times after t0) belongs to Cad (t0 + 1, x (t0 + 1)) (where x (t0 + 1) =
x (t0 + 1; t0, x0, c (·)) = f (t0, x0, c (t0))) so that we have

T∑
t=t0+1

f0 (t, x (t) , c (t)) + φ0 (x (T + 1))

≤ sup
c∈Cad(t0+1,x(t0+1))

T∑
t=t0+1

f0 (t, x (t) , c (t)) + φ0 (x (T + 1)) = V (t0 + 1, x (t0 + 1))

which means

V (t0, x0) ≤ sup
c(·)∈Cad(t0,x0)

{f0 (t0, x0, c (t0)) + V (t0 + 1, fD (t0, x0, c (t0)))} .

The proof of the opposite inequality is left as an exercise. For the proof in the infinite
horizon case see e.g. [11].

Remark 6.1 The above theorem provides a functional equation11 for the value function
V . The treatment of it is much different depending on the finiteness of the horizon T of
the problem. In fact in the finite horizon case we have that

11By functional equation we mean an equation where the unknown is a function.
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• The value function V is the unique solution of (19).

• The value function can be calculated using a backward recursive algorithm given by
(20). In fact we have, by the definition of value function

V (T + 1, x0) = φ0 (x0)

and, taking (20) for t0 = T

V (T, x0) = sup
c∈C(T,x0)

{f0 (T, x0, c) + V (T + 1, fD (T, x0, c))}

= sup
c∈C(T,x0)

{f0 (T, x0, c) + φ0 (fD (T, x0, c))} .

This allows to calculate v (T, x0) . Then, using again (20) for t0 = T − 1

V (T − 1, x0) = sup
c∈C(T−1,x0)

{f0 (T − 1, x0, c) + V (T, fD (T − 1, x0, c))} .

and so, recursively, we can calculate V (t0, x0) for every 0 ≤ t0 < T . Observe that
substantially we are dividing the problem of optimizing over T − t0 + 1 variables
c (t0) , . . . , c (T ), in T − t0 + 1 “static” parametric problems taken backward sequen-
tially in time. To write explicitly this fact choose a case where T = 1 and note
that

V (0, x0) = sup
c(·)∈Cad(0,x0)

f0 (0, x0, c (0)) + f0 (1, x (1) , c (1)) + φ0 (2, x (2))

= sup
c0∈C(0,x0)

{
f0 (0, x0, c0) + sup

c1∈C(1,x(1))

{f0 (1, fD (0, x0, c0) , c1) + φ0 (2, f (1, fD (0, x0, c0) , c1))}
}

Remark 6.2 In the infinite horizon case it is not true in general that the value function
is the unique solution to the Bellman equation. So given a solution w to it we need to
understand if it is or not the value function. A sufficient condition for this is e.g. that

lim
t→+∞

w (t, x (t)) = 0

on every admissible trajectory x (·).

Before to give the next result we recall that, if c∗ is an optimal strategy at (t0, x0),
the associate state trajectory at time t is denoted by x∗ (t) = x (t; t0, x0, c

∗ (·)). The couple
(x∗, c∗) is an optimal state-control couple.

Theorem 6.3 (Bellman’s optimality principle). Let Hypotheses 3.12 hold for problem
(P ). Then for every (t0, x0) ∈ ([0, T ] ∩ N)×X and t ∈ [t0, T ] ∩ N we have:

c∗ optimal at (t0, x0) =⇒ c∗|[t,T ]∩N optimal at (t, x∗ (t)) .

Roughly speaking: “Every second part of an optimal trajectory is optimal”.

28



Theorem 6.4 (Optimality conditions via dynamic programming). Let Hypotheses 3.12
hold for problem (P ). Let T < +∞. Then for every (t0, x0) ∈ ([0, T ] ∩ N)×X we have:

c∗(·) optimal at (t0, x0)

m (21)

c∗ (t) ∈ arg max
c∈C(t,x∗(t))

{f0 (t, x∗ (t) , c) + V (t+ 1, f (t, x∗ (t) , c))} , ∀t ∈ [t0, T ] ∩ N

Let now T = +∞. Then

c∗(·) optimal at (t0, x0)

m
c∗ (t) ∈ arg max

c∈C(t,x∗(t))
{f0 (t, x∗ (t) , c) + V (t+ 1, f (t, x∗ (t) , c))} , ∀t ∈ T

and lim
t→+∞

V (t, x∗ (t)) = 0

Remark 6.5 Equivalently we may write (21) as

c∗(·) optimal at (t0, x0)

m

f0 (t, x
∗ (t) , c∗ (t)) + v (t+ 1, f (t, x∗ (t) , c∗ (t)))

= max
c∈C(t,x∗(t))

{f0 (t, x∗ (t) , c) + v (t+ 1, f (t, x∗ (t) , c))} , ∀t ∈ T . (22)

Moreover, defining the (possibly) multivalued function G : T × X → C as, for every
(t, x) ∈ T ×X,

G (t, x) = arg max
c∈C(t,x)

{f0 (t, x, c) + v (t+ 1, f (t, x, c))}

the above optimality condition (22) reads as

c∗ (t) ∈ G (t, x∗ (t)) ∀t ∈ T . (23)

This is exactly what we called an Optimal Feedback map in Section 3.2.3.

Remark 6.6 Note that, once we calculated the value function (if possible) solving the
Bellman equation, the above Theorem 6.4 and the subsequent remark tell us a way to
calculate the optimal couples. It is enough to use (23) putting it into the state equation
obtaining the closed loop equation (see Section 3.2.3)

{
x∗ (t+ 1) ∈ f (t, x∗ (t) , G (t, x∗ (t))) , ∀t ∈ T
x (t0) = x0

(24)

Solving, if possible, this difference equation (inclusion) we find the optimal trajectory x∗ (·).
The optimal strategy at time t is then given by substituting the x∗ (t) into (23). In our
cases we will always have G monovalued, so a veritable function.
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Remark 6.7 In some infinite horizon cases we may be able to find a solution of the
Bellman equation but we may not be able to prove that such solution is the value function
(e.g. if we are not able to exploit the sufficient condition of Remark 6.2). In such case we
may use the following variant of Theorem 6.4:

Assume that w solves the Bellman equation and fix t0 ∈ [0, T ] ∩ N, x0 ∈ X. Assume
that we can find an admissible couple (c̄(·), x̄(·)) ∈ C(t0, x0) such that

f0 (t, x̄ (t) , c̄ (t)) + w (t+ 1, f (t, x̄ (t) , c̄ (t)))

= max
c∈C(t,x̄(t))

{f0 (t, x̄ (t) , c) + w (t+ 1, f (t, x̄ (t) , c))} , ∀t ∈ T . (25)

and
and lim

t→+∞
w (t, x̄ (t)) = 0

then w(t0, x0) = V (t0, x0) and the couple (c̄(·), x̄(·)) is optimal at (t0, x0).

6.1.1 The infinite horizon case with discount

We consider here the infinite horizon discrete time problem where f0 = βtf1 and f, g are
autonomous, so

(P1) Maximize the functional

J (t0, x0, c (·)) =
+∞∑
t=t0

βtf1 (x (t) , c (t)) dt

with state equation

{
x(t+ 1) = f(x(t), c(t));
x(t0) = x0

t ∈ T = [t0,+∞)
x0 ∈ X ⊆ Rn,

and constraints
x (t) ∈ X, c (t) ∈ C, ∀t ∈ T
g (x (t) , c (t)) ≤ 0, ∀t ∈ T .

As seen in Remark 3.14 we have that, for every (t0, x0) ∈ T ×X

V (t0, x0) = βt0V (0, x0) .

So in this case it is enough to know the function V0 (x0) = V (0, x0) to calculate the value
function. This means that we can avoid to let the initial time vary, so we take t0 = 0 and
consider the value function

V0 (x0) = sup
c(·)∈Cad(0,x0)

+∞∑
t=0

βtf1 (x (t) , c (t)) = sup
c(·)∈Cad(0,x0)

J (0, x0, c (·))

Assume that
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Hypothesis 6.8 For every x0 ∈ X we have

Cad (0, x0) 6= ∅

and
V0 (x0) < +∞

Remark 6.9 Note that we accept that V0 (x0) = −∞ at some x0 ∈ X.

In this case the above Theorems 1, 6.3, 6.4 are rewritten as follows

Theorem 2 (Bellman equation). Let Hypothesis 6.8 hold for problem (P1). Then setting
for everey x0 ∈ X

C (x0) = {c ∈ C : ∃c (·) ∈ Cad (0, x0) with c (0) = c} ,

we have
V0 (x0) = sup

y∈C(x0)

{f1 (x0, c) + βV0 (f (x0, c))} (26)

or, equivalently, for every x0 ∈ X and τ ∈ T ,

V0 (x0) = sup
c(·)∈Cad(0,x0)

{
τ∑

t=0

f1 (x (t) , c (t)) + βτ+1V0 (x (τ + 1; 0, x0, c (·)))
}
. (27)

Remark 6.10 As recalled in Remark 6.2, in the infinite horizon case it is not true in
general that the value function is the unique solution to the Bellman equation. So given
a solution z to it we need to understand if it is or not the value function. A sufficient
condition for this is given in Remark 6.2 and, in the discounted case it says that

lim
t→+∞

βtz (x (t)) = 0

on every admissible trajectory x (·). Another sufficient condition that we will use is that:

• for every admissible trajectory x (·)

lim
t→+∞

inf βtz (x (t)) ≤ 0

• for every admissible couple (x (·) , c (·)) there exists another admissible trajectory
(x̄ (·) , c̄ (·)) with

J (0, x0, c̄ (·)) ≥ J (0, x0, c (·))
and

lim
t→+∞

sup βtz (x̄ (t)) ≥ 0

see on this [29, Propositions 2.7, 2.8 ].
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Theorem 6.11 (Bellman’s optimality principle). Let Hypothesis 6.8 hold for problem
(P1). Then for every x0 ∈ X and t ≥ 0, we have:

(x∗ (·) , c∗ (·)) optimal couple at x0 =⇒ (x∗ (t+ ·) , c∗ (t+ ·)) optimal couple at x∗ (t) .

Roughly speaking: “Every second part of an optimal trajectory is optimal”.

Theorem 6.12 (Optimality conditions via dynamic programming). Let Hypothesis 6.8
hold for problem (P1). Let T = +∞ and fix x0 ∈ X. Then we have:

(x∗ (·) , c∗ (·)) optimal at x0

m (28)

c∗ (t) ∈ arg max
c∈C(x∗(t))

{f1 (x∗ (t) , c) + βV0 (f (x∗ (t) , c))} , ∀t ∈ T

and lim
t→+∞

βtV0 (x
∗ (t)) = 0

Remark 6.13 Observe first that by definition of argmax

c∗ (t) ∈ arg max
c∈C(x∗(t))

{f1 (x∗ (t) , c) + βV0 (f (x∗ (t) , c))} , ∀t ∈ T

m
f1 (x

∗ (t) , c∗ (t))+βV0 (f (x∗ (t) , c∗ (t))) = max
c∈C(x∗(t))

{f1 (x∗ (t) , c) + βV0 (f (x∗ (t) , c))} , ∀t ∈ T .

Defining a (possibly multivalued) function G : X → X as

G (x) = arg max
c∈C(x)

{f1 (x, c) + βV0 (f (x, c))}

we can rewrite the above (28) as

(x∗ (·) , c∗ (·)) optimal at x0

m
x∗ (t+ 1) ∈ f (x∗ (t) , G (x∗ (t))) , ∀t ∈ T (29)

and lim
t→+∞

βtV0 (x
∗ (t)) = 0 (30)

so to find the optimal trajectories we have to solve a difference equation (possibly a dif-
ference inclusion if G is multivalued) with initial condition x (0) = x0. If the solution (or
a solution if there are more than one) satisfies (30) then it is an optimal trajectory. The
difference equation (inclusion)

{
x∗ (t+ 1) ∈ f (x∗ (t) , G (x∗ (t))) , ∀t ∈ T
x (0) = x0

plays the role of the closed loop equation (24) in this case, so it will be also called the
closed loop equation for our problem.

We finally observe that still Remark 6.7 can be applied here.
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Remark 6.14 We outline below the main steps to follows to find (if possible) an optimal
trajectory for problem (P1).

1. Write the problem in the standard formulation (if it is not already written this way),
see on this Exercise 4.

2. Write the Bellman equation.

3. Find a solution to the Bellman equation.

4. Prove that such solution is the value function using Remark 6.10.

5. Use Remark 6.13 to find optimal strategies, namely:

(a) find the feedback map G;

(b) solve the difference equation (inclusion) (29) with the initial condition x (0) =
x0;

(c) check if the solution (or a solution if there are many) satisfies (30).

Remark 6.15 If in some point f1 is not finite (see next exercise at point 3 or [29, Section
3.1.1]) everything can be studied without problems. Usually one includes also points where
f1 is −∞ in X.

6.2 Exercises (DP-discrete time case)

Exercise 1 (Cake eating, finite horizon). Consider the problem, for fixed T ∈ [0,+∞)
(T = [0, T ] ∩ N)

Maximize U1 (c (·)) =
T∑
t=0

βtU0 (c (t))

with the constraints :

c (t) ≥ 0 ∀t ∈ T , (control constraint),

x (t) ≥ 0, ∀t ∈ T , (state constraint),

{
x (t+ 1) = x (t)− c (t) ∀t ∈ T ,

x (0) = x0,
(state equation).

1. Rewrite it in the (CV) form by eliminating the variable c.

2. Solve the problem in the case T = 1, U0 (c) =
ca

α
(α ∈ (0, 1]) by using static opti-

mization tecniques.

3. Solve the problem in the case T = 1, U0 (c) =
ca

α
(α ∈ (0, 1]) by using DP.
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Solution. The first point is contained in Section 3.1.5. The others are easy applica-
tions. We outline them below.

We ned to maximize the function of the two variables (c (0) , c (1))

U1 (c (0) , c (1)) = U0 (c (0)) + βU0 (c (1))

under the constraints

c (0) ≥ 0, c (1) ≥ 0, c (0) + c (1) ≤ x0

The region is a triangle. Using static optimization techniques we see that:
- the objective function is strictly concave and continuous and defined on a convex

closed region. This implies that there exists a unique maximum point.
- there are no interior critical point so the maximum point lies in the boundary.
- the maximum point must live on the segment

c (0) ≥ 0, c (1) ≥ 0, c (0) + c (1) = x0.

Using DP we see that
c (1) = x (1) = x0 − c (0)

so that c (0) solves the static optimization problem

max
c(0)∈[0,x0]

U0 (c (0)) + βU0 (x0 − c (0)) .

We live calculations as exercise. Please check that the two methods give the same solution

Exercise 2 (Cake eating, infinite horizon). Consider the problem, for fixed T = +∞
(T = N)

Maximize U2 (x0, c (·)) =
+∞∑
t=0

βtU0 (c (t))

with the constraints :

x (t) ≥ 0, c (t) ≥ 0 ∀t ∈ T ,

x (t+ 1) = x (t)− c (t) ∀t ∈ T .

x (0) = x0

Here X = [0,+∞) and C = [0,+∞)

1. Write the Bellman equation.

2. For U0 (c) = ca

α
(α ∈ (0, 1)) show that, for suitable value of the parameter A the

function
z (x) = Axα

is a solution to the Bellman equation. Prove that z = V0 using Remark 6.10. Find
the optimal strategies.
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3. For U0 (c) =
ca

α
(α ∈ (−∞, 0)) show that, for suitable value of the parameter A the

function
z (x) = Axα

is a solution to the Bellman equation. Prove that z = V0 using Remark 6.10. Find
the optimal strategies.

4. For U0 (c) = ln c show that, for suitable value of the parameters A and B the function

z (x) = A+B lnx

is a solution to the Bellman equation. Prove that z = V0 using Remark 6.10. Find
the optimal strategies.

5. For U0 (c) = c show that, for suitable value of the parameter A the function

z (x) = Ax

is a solution to the Bellman equation. Prove that z = V0 using Remark 6.10. Find
the optimal strategies.

Solution:

1. Since f1 (x, y) = U0 (c) in this case the Bellman equation is

V0 (x) = sup
c∈C(x)

{U0 (c) + βV0 (x− c)} .

recalling that here C (x) = [0, x] due to the state and control constraints.

2. Setting U0 (c) =
ca

α
(α ∈ (0, 1)) the Bellman equation is

V0 (x) = sup
c∈C(x)

{U0 (c) + βV0 (x− c)} .

Set now z (x) = Axα (A ∈ R) and check if such a function is a solution of the
Bellman equation above. To see this we substitute in place of V0 the function z and
check if we, for some values of A we get equality for every x ∈ X.

Axα = sup
c∈[0,x]

{
cα

α
+ βA (x− c)α

}
. (31)

We proceed by calculating the sup in the right hand side. Setting

h (c) =
cα

α
+ βA (x− c)α ; h : [0, x] → R

we can easily check that h is continuous on [0, x], differentiable in (0, x) and

h′ (y) = cα−1 − βAα (x− c)α−1 ,
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h′′ (y) = (α− 1) cα−2 + βAα (α− 1) (x− c)α−2 .

Fix now A > 0 (this is reasonable since we are looking for the value function which
is positive). Since α < 1 we have h′′ (c) < 0 on (0, x) so h is strictly concave there.
Moreover

h′ (c) = 0

⇐⇒ cα−1 = βAα (x− c)α−1

⇐⇒ c = (βAα)
1

α−1 (x− c)

⇐⇒ c
(
1 + (βAα)

1
α−1

)
= (βAα)

1
α−1 x

⇐⇒ c =
(βAα)

1
α−1

1 + (βAα)
1

α−1

x ∈ (0, x)

so by the strict concavity the point

cmax =
(βAα)

1
α−1

1 + (αβA)
1

α−1

x = G (x) (32)

is the unique maximum point of h in [0, x] (note that we have called it G (x) since
below it will become the argmax needed to find the optimal strategy, recall Remark
6.13). Now observe that

h (cmax) =
cαmax

α
+ βA (x− cmax)

α

=
1

α

(
(βAα)

1
α−1

1 + (βAα)
1

α−1

)α

xα + βA

(
1

1 + (βAα)
1

α−1

)α

xα

=
xα

α

1(
1 + (βAα)

1
α−1

)α

[
(βAα)

α
α−1 + βAα

]

= xαβA
(
1 + (αβA)

1
α−1

)1−α

where the last step follows since

(αβA)
α

α−1 + αβA = (αβA)1+
1

α−1 + αβA = (αβA) · (αβA) 1
α−1 + αβA

αβA
(
1 + (αβA)

1
α−1

)
.

Putting this result into equation (31) we get

Axα = xαβA
(
1 + (αβA)

1
α−1

)1−α

∀x ∈ X.

The latter is verified if and only if the coefficients of xα are equal, i.e.

A = βA
(
1 + (αβA)

1
α−1

)1−α

⇐⇒
(
1 + (αβA)

1
α−1

)1−α

= β−1

⇐⇒ 1 + (αβA)
1

α−1 = β
1

α−1 ⇐⇒ (αβA)
1

α−1 = β
1

α−1 − 1.
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Now we can take the power α− 1 but this is possible if and only if

β
1

α−1 − 1 > 0.

However this condition is always satisfied in this case as β ∈ (0, 1). We then get

αβA =
(
β

1
α−1 − 1

)α−1

⇐⇒ A =
1

α

(
β

1
α−1 − 1

)α−1

=
1

α

(
1− β

1
1−α

)α−1

> 0.

We now prove that z = V0 using Remark 6.10. It is enough to show that, for every
admissible trajectory x (·) we have

lim
t→+∞

βtA [x (t)]α = 0. (33)

But this is obvious since the sequence x (t) is always contained in [0, x0] and so it is
bounded and also [x (t)]α is bounded. Then the product of a bounded sequence for
an infinitesimal one must go to 0.

We finally find the optimal strategies. According to Remark 6.14 we have to

(a) find the feedback map G;

(b) solve the difference equation (inclusion) (29) with the initial condition x (0) =
x0;

(c) check if the solution (or a solution if there are many) satisfies (30).

The first duty is already done, recall the equation (32) Let us then solve the closed
loop equation

x (t+ 1) = x (t)−G (x (t))

= x (t)− (βAα)
1

α−1

1 + (αβA)
1

α−1

x (t)

=
1

1 + (αβA)
1

α−1

x (t) = β
1

1−αx (t) , (t ∈ N); x (0) = x0.

This is clearly a geometric sequence, so the unique solution is

x∗ (t) = β
1

1−α
tx0.

The associated control is then

c∗(t) = G(x∗(t)) =
(βAα)

1
α−1

1 + (αβA)
1

α−1

β
1

1−α
tx0.

It is immediate to check that the couple (c∗(·), x∗(·)) is admissible since it is always
positive. Finally we check if (30) is satisfied: this writes

lim
t→+∞

βtA [x∗ (t)]α = 0
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but this is surely true since, by (33) we know this is true for every admissible strategy,
and also for x∗. So x∗ is optimal. It is also the unique optimal trajectory since any
other optimal trajectory should satisfy the same optimality conditions that have
unique solution in this case.

3. U0 (c) = ca

α
(α ∈ (−∞, 0)) show that, for suitable value of the parameter A the

function
z (x) = Axα

is a solution to the Bellman equation. Prove that z = V0 using Remark 6.10. Find
the optimal strategies.

Setting U0 (c) =
ca

α
(α ∈ (−∞, 0)) the Bellman equation is

V0 (x) = sup
c∈C(x)

{U0 (c) + βV0 (x− c)} .

Set now z (x) = Axα (A ∈ R) and check if such a function is a solution of the
Bellman equation above. To see this we substitute in place of V0 the function z and
check if we, for some values of A we get equality for every x ∈ X.

Axα = sup
c∈[0,x]

{
cα

α
+ βA (x− c)α

}
.

We proceed by calculating the sup in the right hand side. Setting

h (c) =
cα

α
+ βA (x− c)α ; h : [0, x] → R

we can easily check that h is continuous on (0, x), differentiable in (0, x) and goes
to −∞ at both extrema 0 and x. By the Weierstrass Theorem with coercivity h
admits a maximum. We have

h′ (c) = cα−1 − βAα (x− c)α−1 ,

h′′ (c) = (α− 1) cα−2 + βAα (α− 1) (x− c)α−2 .

Fix now A < 0 (this is reasonable since we are looking for the value function which
is negative). Since α < 0 we have h′′ (c) < 0 on (0, x) so h is strictly concave there.
Moreover, being αβA > 0 we can write

h′ (c) = 0

⇐⇒ cα−1 = βAα (x− c)α−1

⇐⇒ c = (βAα)
1

α−1 (x− c)

⇐⇒ c
(
1 + (βAα)

1
α−1

)
= (βAα)

1
α−1 x

⇐⇒ c =
(βAα)

1
α−1

1 + (βAα)
1

α−1

x ∈ (0, x)

38



so by the strict concavity the point

cmax =
(βAα)

1
α−1

1 + (αβA)
1

α−1

x = G (x)

is the unique maximum point of h in [0, x] (note that we have called it G (x) since
below it will become the argmax needed to find the optimal strategy, recall Remark
6.13). Now observe that

h (cmax) =
cαmax

α
+ βA (x− cmax)

α

=
1

α

(
(βAα)

1
α−1

1 + (βAα)
1

α−1

)α

xα + βA

(
1

1 + (βAα)
1

α−1

)α

xα

=
xα

α

1(
1 + (βAα)

1
α−1

)α

[
(βAα)

α
α−1 + βAα

]

= xαβA
(
1 + (αβA)

1
α−1

)1−α

where the last step follows since

(αβA)
α

α−1 + αβA = (αβA)1+
1

α−1 + αβA = (αβA) · (αβA) 1
α−1 + αβA

αβA
(
1 + (αβA)

1
α−1

)
.

Putting this result into equation (31) we get

Axα = xαβA
(
1 + (αβA)

1
α−1

)1−α

∀x ∈ X.

The latter is verified if and only if the coefficients of xα are equal, i.e.

A = βA
(
1 + (αβA)

1
α−1

)1−α

⇐⇒
(
1 + (αβA)

1
α−1

)1−α

= β−1

⇐⇒ 1 + (αβA)
1

α−1 = β
1

α−1 ⇐⇒ (αβA)
1

α−1 = β
1

α−1 − 1.

Now we can take tha power α− 1 but this is possible if and only if

β
1

α−1 − 1 > 0.

This condition is equivalent to ask β ∈ (0, 1) and turns out to be necessary and
sufficient fro the existence of the optimal trajectory. Under this condition we get

αβA =
(
β

1
α−1 − 1

)α−1

⇐⇒ A =
1

α

(
β

1
α−1 − 1

)α−1

=
1

α

(
1− β

1
1−α

)α−1

< 0.

We now prove that z = V0 using Remark 6.10. It is enough to show that, for every
admissible trajectory x (·) we have

lim
t→+∞

βtA [x (t)]α = 0.
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But this is not true since for example the sequence x (t) = x0β
− t

α is admissible
(please check it!) and gives

lim
t→+∞

βtA
[
x0β

− t
α

]α
= lim

t→+∞
βtAxα

0β
−t = Axα

0 < 0.

So one needs to use a more refined argument, the second one of the Remark 6.10.
Since or every admissible trajectory x (·) we have

βtA [x (t)]α ≤ 0

this implies
lim

t→+∞
inf βtA [x (t)]α ≤ 0.

Moreover if the series
+∞∑
t=0

βt c (t)
α

α

diverges then it has payoff −∞. Every admissible trajectory such that the above
series is convergent has better payoff than it. Then it is enough for us to prove that
for any such couple (x (·) , c (·)) we have

lim
t→+∞

sup βtA [x (t)]α ≥ 0.

Now if the series above converges we have that the term goes to 0 as t → +∞. Since
c (t) ≤ x (t) for every t ≥ 0, then (recall that α < 0)

Aβtx (t)α ≥ Aβtc (t)α

and so

Aβtx (t)α ≥
(
β

1
α−1 − 1

)α−1

βt c (t)
α

α

it follows

lim
t→+∞

sup βtA [x (t)]α ≥
(
β

1
α−1 − 1

)α−1

lim
t→+∞

sup βt c (t)
α

α
= 0

and this gives the claim.

We finally find the optimal strategies. According to Remark 6.14 we have to

(a) find the feedback map G;

(b) solve the difference equation (inclusion) (29) with the initial condition x (0) =
x0;

(c) check if the solution (or a solution if there are many) satisfies (30).

40



The first duty is already done, recall the equation (32) Let us then solve the closed
loop equation

x (t+ 1) = x (t)−G (x (t))

= x (t)− (βAα)
1

α−1

1 + (αβA)
1

α−1

x (t)

=
1

1 + (αβA)
1

α−1

x (t) = β
1

1−αx (t) , (t ∈ N); x (0) = x0.

This is clearly a geometric sequence, so the unique solution is

x∗ (t) = β
1

1−α
tx0.

Finally we check if (30) is satisfied: this writes

lim
t→+∞

βtA [x∗ (t)]α = 0

but this is surely true since, by (33) we know this is true for every admissible strategy
with convergent series and for such x∗ the series converges (please check it). One
can also calculate directly the limit getting

lim
t→+∞

βtA [x∗ (t)]α = lim
t→+∞

βtAβ
1

1−α
αtxα

0 = 0

since β1+ α
1−a < 1. So x∗ is optimal. It is also the unique optimal trajectory since any

other optimal trajectory should satisfy the same optimality conditions that have
unique solution in this case.

4. This case is deeply analyzed in [29, Section 3.1.1].

5. This case is analyzed in [29, Sections 3.1.3-3.1.4].

6.3 The continuous time case: HJB equations and feedbacks

Here we consider the problem (P) in the continuous time case, finite of infinite horizon
T , as described in subsection 3.2.1. We start by the Bellman’s Optimality Principle.

Theorem 6.16 (Bellman Optimality Principle). Let Hypothesis 3.12 hold for problem
(P ). Then for every (t0, x0) ∈ ([0, T ] ∩ R)×X and τ ∈ [t0, T ] ∩ R we have

V (t0, x0) = sup
c∈Cad(t0,x0)

{∫ τ

t

f0 (s, x (s; t0, x0, c) , c (s)) ds+ V (τ, x (τ ; t0, x0, c))

}
(34)

Proof. See e.g. [42], [43], [4].
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Remark 6.17 The above result also holds for a more general class of problems. Indeed
what is needed to prove such result is the following assumption on the set of admissible
strategies.

Hypothesis 6.18 The family of admissible control strategies {Cad (t, x)}(t0,x0)∈([0,T ]∩R)×X

satisfies the following properties:

1. For every 0 ≤ t0 ≤ τ < T , x ∈ X,

c(·) ∈ Cad (t0, x0) ⇒ c(·)|[τ,T ]∩R ∈ Cad (τ, x (·; t0, x0, c))

(i.e. the second part of an admissible strategy is admissible)

2. For every 0 ≤ t0 ≤ τ < T , x0 ∈ X,

c1 ∈ Cad (t0, x0) , c2 ∈ Cad (τ, x (τ ; t0, x0, c1)) ⇒ c ∈ Cad (t0, x0)

for c defined as

c (s) =

{
c1 (s) if s ∈ [t, τ ]
c2 (s) if s ∈ [τ, T ] ∩ R

(i.e. the concatenation of two admissible strategies is admissible)

Note that the above hypothesis is satisfied if the set of admissible strategies is of the
form given for our problem (P).

Equation (34) is a functional equation satisfied by the value function. This is an
alternative representation of V that can be useful to determine its properties or even to
calculate it. Of course the functional form of (34) is not easy to handle. It is convenient
then to find a differential form of it, i.e. the so called Hamilton-Jacobi-Bellman (HJB)
equation.

We state it first in the finite horizon case.

Theorem 6.19 Let T < +∞. Assume that Hypothesis 3.12 holds. Assume further that f0
is uniformly continuous, φ is continuous and fC satisfies assumptions stated in footnote 3.
Assume finally that V ∈ C1 ([0, T ]×X). Then V is a classical12 solution of the following
Partial Differential Equation (PDE):

−Vt (t0, x0) = HMAX (t0, x0, Vx (t0, x0)) (t0, x0) ∈ [0, T ]×X (35)

with the final condition
V (T, x0) = φ (x0) x0 ∈ X

where the function HMAX : [0, T ]×X ×Rn → R (the “Maximum value Hamiltonian” or,
simply, the “Hamiltonian”) is given by:

HMAX (t0, x0, p) = sup
c∈C

{HCV (t0, x0, p; c)} (36)

where
HCV (t0, x0, p; c) = 〈fC (t0, x0, c) , p〉+ f0 (t0, x0, c) (37)

Proof. See e.g. [42], [43], [4].

12In the sense that all derivatives exist and that the equation is satisfied for every x ∈ X.
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Remark 6.20 The equation (35) usually bear the names of Hamilton and Jacobi because
such kind of PDE’s were first studied by them in connection with calculus of variations
and classical mechanics. Bellman was the first to discover its relationship with control
problems, see on this [4], [43]. We will call it Hamilton-Jacobi-Bellman (HJB) equation.

Remark 6.21 The function HMAX (t, x, p) is usually called (in the mathematics litera-
ture) the Hamiltonian of the problem. However in many cases the Hamiltonian is defined
differently. In particular in the economic literature the name Hamiltonian (or “current
value Hamiltonian” while the other is the “maximun value Hamiltonian”) is often used for
the function to be maximized in (36). To avoid misunderstandings we will then use the
notation

HCV (t, x, p; c) = 〈f (t, x, c) , p〉+ l (t, x, c)

for the current value Hamiltonian and

HMAX (t, x, p) = sup
c∈C

HCV (t, x, p; c)

for the maximum value Hamiltonian.

Remark 6.22 The key issue of the above result is to give an alternative characterization
of the value function in term of the PDE (35). In fact this give a very powerful tool to study
properties of V and to calculate it by some numerical analysis (at least in low dimension,
see on this [4]). And knowing V one can get important information on the optimal state-
control trajectories, as we will see below. However to get a real characterization one need
a much more powerful result: here we assumed V ∈ C1 ([0, T ]×X) and we did not get
uniqueness. A “good” result should state that the value function V is the unique solution of
(35) under general hypothesis on the data. Such kind of result have been a difficult problem
for many years (see on this [43]) because the usual definitions of classical or generalized
solution did not adapt to PDE of HJB type (see e.g. Benton’s book [9] for such approach to
HJB equations). The problem was solved in the 80ies with the introduction of the concept
of viscosity solutions by Crandall and Lions (see e.g. [4]). With this concept it is possible
to state that the value function V is the unique “viscosity” solution of (35) under mild
assumptions on the data. And now we can satisfy a curiosity that some of you may have
had in reading the HJB equation (35): why do we take the double minus sign?. Here is the
point: the concept of viscosity solution is “sign” sensitive, i.e. if a function v is a viscosity
solution of the PDE

F (t, x, vt (t, x) , vx (t, x)) = 0

this does not imply that v is also a viscosity solution of the same PDE with opposite sign

−F (t, x, vt (t, x) , vx (t, x)) = 0

(see on this [4]). This fact suggests to be careful in saying what is exactly the sign of the
HJB equation of the problem (P ). It turns out that the right sign is exactly

−Vt (t, x) = HMAX (t, x, Vx (t, x)) = 0 (t, x) ∈ [0, T ]×X
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which corresponds to take the same sign of the Bellman optimality principle (34), even
if we don’t like the initial minus sign: do not change sign when talking about viscosity
solutions! Of course, talking about classical solutions, as in Theorem 6.19, we can forget
the sign: we kept it for coherence.

The HJB equation has a crucial importance for solving the optimal control problem
(P ). Before to give the main result on it we prove a fundamental identity in next lemma.

Lemma 6.23 Assume that the hypotheses of Theorem 6.19 hold for problem (P ) and
let v ∈ C1 ([0, T ]×X) be a classical solution of (35)13. Then the following fundamental
identity holds: for every (t0, x0) ∈ [0, T ] ×X, for every c(·) ∈ Cad (t0, x0), setting x (s) =
x (s; t0, x0, c) we have

v (t0, x0)− J (t0, x0; c(·)) (38)

=

∫ T

t

[HMAX (s, x (s) , vx (s, x (s)))−HCV (s, x (s) , vx (s, x (s)) ; c (s))] ds

and, in particular, v (t0, x0) ≥ V (t0, x0) for every (t0, x0) ∈ [0, T ] × X. Moreover the
problem of maximizing J is equivalent to the problem of maximizing

J̄ (t0, x0; c(·)) = −
∫ T

t

[HMAX (s, x (s) , vx (s, x (s)))−HCV (s, x (s) , vx (s, x (s)) ; c (s))] ds

Proof. Let us fix initial data (t0, x0) ∈ [0, T ]×X and control strategy c ∈ Cad (t0, x0).
Then calculate, using that v is a classical solution of (35)

d

ds
v (s, x (s)) =

∂

∂s
v (s, x (s)) +

〈
x′ (s) ,

∂

∂x
v (s, x (s))

〉

= −HMAX (s, x (s) , vx (s, x (s))) + 〈x′ (s) , vx (s, x (s))〉

= −HMAX (s, x (s) , vx (s, x (s))) + 〈fC (s, x (s) , c) , vx (s, x (s))〉
+f0 (s, x (s) , c (s))− f0 (s, y (s) , c (s))

= −HMAX (s, x (s) , vx (s, x (s))) +HCV (s, x (s) , vx (s, x (s)) ; c (s))− f0 (s, x (s) , c (s))

Integrating the above identity on [t0, T ] we then get:

v (T, x (T ))− v (t0, x0)

= −
∫ T

t0

[HMAX (s, x (s) , vx (s, x (s)))−HCV (s, x (s) , vx (s, x (s)) ; c (s))] ds

−
∫ T

t0

f0 (s, x (s) , c (s)) ds

iwhich gives (38) by recalling that v (T, x (T )) = φ (y (T )) and rearranging the terms.

13This may or may not be the value function.
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Theorem 6.24 Let v ∈ C1 ([0, T ]×X) be a classical solution of (35).

1. Fix (t0, x0) ∈ [0, T ] × X and assume that there exists an admissible state-control
couple (x̄(·), c̄(·)) such that

HMAX (s, x̄ (s) , vx (s, x̄ (s)))−HCV (s, x̄ (s) , vx (s, x̄ (s)) ; c̄ (s)) = 0 s ∈ [t, T ] , a.e.

i.e.
c̄ (s) ∈ argmaxHCV (s, x̄ (s) , vx (s, x̄ (s)) ; c̄) s ∈ [t, T ] , a.e.. (39)

Then such couple is optimal at (t0, x0) and v (t0, x0) = V (t0, x0) at such point.

2. Moreover, if we know from the beginning that v (t0, x0) = V (t0, x0), then every
optimal strategy satisfies equation (39).

3. Finally, if, for every (t0, x0, p) ∈ [0, T ] × X × Rn the map c 7→ HCV (t0, x0, p; c)
admits a unique maximum point G0 (t0, x0, p), and the closed loop equation

x′ (s) = fC (s, x (s) , G0 (s, x (s) , vx (s, x (s)))) s ∈ [t, T ] , a.e..

x (t0) = x0

has a unique solution x∗(·), and the control strategy

c∗ (s) = G0 (s, x
∗ (s) , vx (s, x∗ (s)))

is admissible, then v = V on [0, T ]×X and (x∗(·), c∗(·)) is an optimal state-control
couple.

Proof. All the statements are direct consequence of Lemma 6.23.

Remark 6.25 Part (iii) of Theorem 6.24 substantially states that the map

(s, y) 7→ G0 (s, y, vx (s, y))
def
= G (s, y)

is the unique optimal feedback map for problem (P ). In particular this gives existence and
uniqueness of an optimal state-control couple in feedback form (“closed loop”).

Remark 6.26 In Lemma 6.23 and in Theorem 6.24 the function v is not necessarily the
value function. Of course, if we know (for example from Theorem 6.19) that the value
function V is a classical solution of equation (35) it is natural to choose v = V .

Remark 6.27 The above results can be used only in few cases, even interesting. Indeed
the HJB equation (35) does not admit in general a classical solution. It is possible to
give an extended nonsmooth version of the above results by using the concept of viscosity
solutions, of course loosing some nice formulation, see on this [4].

Remark 6.28 Note that the above results do not need uniqueness of solutions of (35).
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6.4 DP in continuous time: autonomous problem with infinite
horizon

As in the discrete time case when we deal with autonomous infinite horizon problems with
discount factor, the HJB equation can be simplified. In this section we present and prove
this fact for the continuous time case.

Consider the problem
(
P̄
)
of maximizing the functional

J (t0, x0; c(·)) =
∫ +∞

t0

e−λsf1 (x (s) , c (s)) ds

where x (·) = x (·; t0, x0, c) is the solution of the state equation

x′ (s) = fC (x (s) , c (s)) ; s ≥ t0

x (t0) = x0 ∈ X

and

c(·) ∈ Cad (t0, x0)
def
= {c : [t,+∞) 7→ C : c (s) ∈ C, x (s; t0, x0, c) ∈ X ∀s ≥ t0}

for given sets C ⊆ Rk (the control space) and X ⊆ Rn (the state space). Problem
(
P̄
)
is

nothing but problem (P ) with infinite horizon, autonomous dynamic fC and f0 (t, x, u) =
e−λsf1 (x, u).

The current value Hamiltonian is

HCV (t, x, p; c) = 〈fC (t, x, c) , p〉+ e−λtf1 (x, c) = e−λt
[〈
fC (x, c) , eλtp

〉
+ f1 (x, c)

]

= e−λtH0CV

(
x, eλtp; c

)

where we set H0CV (x, q; c) = 〈fC (x, c) , q〉 + f1 (x, u). The maximum value Hamiltonian
is

HMAX (t, x, p) = sup
c∈C

HCV (t, x, p; c) = e−λt sup
c∈C

H0CV

(
x, eλtp;u

) def
= e−λtH0MAX

(
x, eλtp

)

Moreover the value function is, for t0 ≥ 0 and x0 ∈ X,

V (t0, x0) = sup
c(·)∈Cad(t0,x0)

J (t0, x0; c(·))

and we have

V (t0, x0) = sup
c∈Cad(t0,x0)

∫ +∞

t0

e−λsf1 (x (s) , c (s)) ds = e−λt0 sup
c∈Cad(t0,x0)

∫ +∞

t0

e−λ(s−t)f1 (x (s) , c (s)) ds

= e−λt0 sup
c∈Cad(t0,x0)

∫ +∞

0

e−λτf1 (x (t+ τ) , c (t+ τ)) dτ.

Now, being f autonomous we have

c(·) ∈ Cad (t0, x0) ⇔ c (t0 + ·) ∈ Cad (0, x0)
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so that

V (t0, x0) = e−λt0 sup
c∈Cad(0,x0)

∫ +∞

0

e−λτf1 (x (s; 0, x0, c) , c (s)) ds = e−λt0V (0, x0) .

Then, if V ∈ C1 ([0,+∞)×X) solves the HJB equation (here the sign does not matter
since we are talking of classical solutions, but we keep for coherence the right sign for
viscosity)

−Vt (t0, x0) = HMAX (t0, x0, Vx (t0, x0)) ,

we have
λe−λt0V (0, x0)− e−λt0H0MAX

(
x0, e

λt0
(
e−λt0Vx (0, x0)

))
= 0

so the function V0 (x0) = V (0, x0) satisfies

λV0 (x0) = H0MAX (x0,∇V0 (x0)) = 0. (40)

In studying the problem
(
P̄
)
. It can be then convenient to study the PDE (40) instead

of (35). This true especially when n = 1, as in our examples, since in this case (40) is
just an ODE and V0 is just a function of one variable. All the results of DP method (in
particular Theorem 6.24 remains true with obvious changes (exercise!).

6.5 DP in continuous time: examples

Now we want to apply the DP method to our examples. First we give an outline of the
main steps of the DP method in the simplest cases (i.e. when the main assumptions of
the above results are verified). We will try to do the following steps.

1. Calculate the Hamiltonians HCV and H together with argmaxHCV .

2. Write the HJB equation and find a classical solution v.

3. Calculate the feedback map G, then solve the closed loop equation finding the
optimal state-control couple.

Of course in general it will be impossible to perform such steps. In particular step 2 is
generally impossible. However, it can be interesting, in dealing with an economic problem,
to study properties of optimal state-control trajectories without knowing them in closed
form (i.e. explicitly). To establish such properties it can be enough to know that that the
value function V is a solution (classical or viscosity, possibly unique) of HJB equation and
that it enjoys some regularity properties (i.e. concavity or differentiability or else) and
then infer from them some properties of optimal couples via the closed loop equation (see
[18] on this). In any case, in our example we will see a very nice case where everything
can be explicitly calculated.

6.6 DP method in the simplest AK model

We develop the calculation in three parts.
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6.6.1 Estimates for the value function

The following proposition is useful to establish when the value function is finite.

Proposition 6.29 Let a = ρ−r(1−σ) > 0. Then, for any k0 ≥ 0 we have, for σ ∈ (0, 1)
and c ∈ A(k0),

0 ≤ Uσ(c) ≤ ρ

1− σ
k1−σ
0

∫ +∞

0

sσe−as ds

=
ρ

1− σ

Γ(1 + σ)

a1+σ
k1−σ
0

while, for σ = 1

Uσ(c) ≤ ρ

∫ +∞

0

e−ρss

[
rs+ log

k0
s

]
ds

and, for σ > 1

0 > Uσ(c) ≥ ρ

1− σ

Γ(1 + σ)

a1+σ
k1−σ
0 .

This result show, in particular, that, when a > 0, and σ ∈ (0, 1) the intertemporal
utility functional Uσ(c) is finite and uniformly bounded for every admissible consumption
strategy (while for σ ≥ 1 it is only bounded from above). So it gives a bound for the value
function.

6.6.2 The Hamiltonians

The current value Hamiltonian H0CV of our problem (Pσ) does not depend on t and is
given, for σ 6= 1 by

H0CV (k, p; c) = rkp− cp+
c1−σ

1− σ
k, p ∈ R, k ≥ 0;

c ∈ [0,+∞) , if σ < 1, and c ∈ (0,+∞) , if σ > 1

and, for σ = 1 by

H0CV (k, p; c) = rkp− cp+ log c

k, p ∈ R, t, k ≥ 0; c ∈ (0,+∞) .

Note that it is the sum of two parts:

H01CV (k, p) = rkp;

H02CV (p; c) = −cp+
c1−σ

1− σ
; or − cp+ log c

where H01CV does not depend on the control c. The Lagrangean L is given by

L (k, p; c; q) = H0CV (k, p; c) + kq k, p, q ∈ R, k, q ≥ 0;
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c ∈ [0,+∞) , if σ < 1, and c ∈ (0,+∞) if σ ≥ 1

The maximum value Hamiltonian is, for k, p ∈ R, k ≥ 0, if σ < 1

H0 (k, p) = max
c≥0

H0CV (k, p; c)

while, if σ ≥ 1
H0 (k, p) = max

c>0
H0CV (k, p; c)

(note that we use the notation max instead of sup since we know that the maximum is
attained here). If we have

p > 0

then the maximum point of H2(p; c) is attained at c = p−1/σ, so that, for σ 6= 1,

H0 (k, p) = rkp+
σ

1− σ
p

σ−1
σ .

and, for σ = 1
H0 (k, p) = rkp− 1− log p

On the contrary, if
p = 0

then for σ ∈ (0, 1]
H0 (k, p) = +∞.

while, for σ > 1
H0 (k, p) = 0.

Finally, if
p < 0

then, for every σ > 0,
H0 (k, p) = +∞.

For simplicity of notation we define:

H01 (k, p) = rkp;

H02(p) =
σ

1− σ
p

σ−1
σ or − 1− log p,

so that, for σ ∈ (0, 1]

H0 (k, p) =

{
H01 (k, p) +H02 (p) ; if p > 0
+∞; if p ≤ 0

and, for σ > 1

H0 (k, p) =





H01 (k, p) +H02 (p) ; if p > 0
0; if p = 0
+∞; if p < 0

.
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We remark that the maximum point of the Hamiltonian H02CV is always unique
(when it exists: but we will prove that this is always the case in section 6.6.3) and it is
stricltly positive:

argmaxH0CV (k, p; c) = p−1/σ > 0

This shows, in particular, that p > 0 i.e. that the shadow price of the consumption good
is always strictly positive (as it should be by straightforward considerations).

6.6.3 The value function

For a given initial endowement k0 > 0 the value function of the problem (Pσ) is defined
as,

V (k0) = sup
c∈A(k0)

Uσ(c).

We now devote some space to study properties of V . In fact later we will calculate ex-
plicitely V , so this part is not really useful in this case. We keep it to show how to work
in case we are not able to calculate V in closed form. We start by a simple result about
the class of admissible trajectories

Lemma 6.30 A(k0) is a closed and convex subset of L1
loc (0,+∞;R). Moreover, for α >

0, k∈R+

A (αk) = αA(k)

and, for every k1, k2 ∈ R+, α ∈ (0, 1)

k1 ≤ k2 =⇒ A(k1) ⊆ A(k2) (41)

A(k1) +A(k2) ⊆ A (k1 + k2) (42)

A(k1) ∪ A(k2) ⊆ A (k1 + k2)

αA(k1) + (1− α)A(k2) ⊆ A (αk1 + (1− α) k2) (43)

Proof. We omit the proof, since it is immediate from the definitions. ¥
Remark 6.31 The converse inclusions hold? Exercise!

The following proposition gives useful properties of V .

Proposition 6.32 Assume that ρ− r(1− σ) > 0. Then

(i) For every k > 0 we have for σ ∈ (0, 1)

0 ≤ V (k) ≤ ρ

1− σ

Γ(1 + σ)

a1+σ
k1−σ

while, for σ = 1

−∞ < V (k) ≤ ρ

∫ +∞

t

e−ρss

[
rs+ log

k

s

]
ds

and, for σ ∈ (1,+∞)

−∞ < V (k) ≤ ρ

1− σ

Γ(1 + σ)

a1+σ
k1−σ
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(ii) V is increasing and subadditive in the sense that

k1 ≤ k2 =⇒ V (k1) ≤ V (k2) ∀k1, k2 ∈ R+

V (k1 + k2) ≤ V (k1) + V (k2) ∀k1, k2 ∈ R+.

(iii) For σ 6= 1 V is (1− σ)-homogeneous in the sense that

V (αk) = α1−σV (k) ∀α > 0, k∈R+

and for σ = 1
V (αk) = ρ−1 logα+ V (k) ∀α > 0, k∈R+

(iv) V is continuous on the positive semiaxis R+ (included the boundary if σ ∈ (0, 1))
and concave.

(v) V is two times differentiable a.e. on R+ and V ′ > 0 at every point of differentiability.
Moreover V admits non-empty superdifferential at every point of R+ and D+V (k) ⊆
R+ for every k∈Rn

+.

Proof.
Proof of (i). It easily follows by the previous proposition.
Proof of (ii). Since A (αk) = αA(k) we have

V (αk) = sup
c∈A(αk)

∫ +∞

0

e−ρt c (t)
1−σ

1− σ
dt = sup

c∈A(k)

∫ +∞

0

e−ρt [αc (t)]
1−σ

1− σ
dt = α1−σV (k)

The monotonicity follows directly from (41) and we omit it.
Proof of (iii). For α ∈ (0, 1) we have

αV (k1) + (1− α)V (k2)

= α sup
c∈A(k1)

∫ +∞

0

e−ρt c (t)
1−σ

1− σ
dt+ (1− α) sup

c∈A(k2)

∫ +∞

0

e−ρt c (t)
1−σ

1− σ
dt

= sup
c1∈A(k1),
c2∈A(k2)

∫ +∞

0

e−ρtαc1 (t)
1−σ + (1− α) c2 (t)

1−σ

1− σ
dt

≤ sup
c1∈A(k1),
c2∈A(k2)

∫ +∞

0

e−ρt [αc1 (t) + (1− α) c2 (t)]
1−σ

1− σ
dt

which implies, by (43) that

αV (k1) + (1− α)V (k2) ≤ sup
c∈A(αk1+(1−α)k2)

∫ +∞

0

e−ρt c (t)
1−σ

1− σ
dt

= V (αk1 + (1− α) k2)
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which gives the concavity. The continuity up to the boundary follows by applying standard
results on convex functions (see e.g. [16], [35]).

Proof of (iv). This part follows in the interior by applying standard results on convex
functions (see e.g. [16], [35]) while on the boundary one needs to use the definition of V
and argue as in the proof of Theorem ??; we omit this part for brevity. ¥

The following Proposition is a version of the Bellman Optimality Principle (BOP)
(see e.g. [8], [20], [4]) for our example. We have shown it only for an example of BOP in
the case of infinite horizon with discount.

Proposition 6.33 Assume that Hypothesis ?? hold. For every t ≥ 0 we set At(k0) as the
set of control strategies that satisfies all the constraints on c and k up to time t, and

Jt (c) =

∫ t

0

e−ρs c (s)
1−σ

1− σ
ds+ e−ρtV (k (t; 0, k0, c))

Then, for every c ∈ A(k0) the function t → g (t) = Jt (c) is nonincreasing and we have,
for every t ≥ 0

V (k0) = sup
c∈At(k0)

Jt (c) (44)

Moreover, if c is optimal for (Pσ) then its restriction to [0, t] is optimal for the problem
(Pt,σ) of maximizing Jt (c) and the function t → g (t) is constant.

Proof. The proof is a standard (see e.g. [8], [20], [4]). ¥
The Hamilton-Jacobi equation associated to our problem is

ρu(k)−H0(k, u
′(k)) ∀k ≥ 0. (45)

where we recall that, in the case σ ∈ (0, 1)

H0(k, p) = sup
c≥0

{
rkp− cp+

c1−σ

1− σ

}

= rkp+
σ

1− σ
p

σ−1
σ .

The Dynamic Programming Principle (44) imply that the value function V is the unique
solution of the above equation in the sense of viscosity solutions (see e.g. [17], [5]). More-
over, by using arguments of [4] we can prove that V is also C1 and so it is a classical
solution of equation (45). However in this case we will get explicit solution so do not go
deep in this regularity problems.

Proposition 6.34 Assume that Hypothesis ?? hold. Then the value function V is a clas-
sical (and also viscosity) solution of the equation (45).
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We observe that (see e.g. [4, p. 133]) from the dynamic programming principle (Propo-
sition 6.33) the following optimality condition follows: a control strategy ĉ ∈ A(k0) is
optimal for the problem (Pσ) if and only if the function

g (t) =

∫ t

0

e−ρs ĉ (s)
1−σ

1− σ
ds+ e−ρtV (k (t; 0, k0, ĉ))

is nondecreasing for t ≥ 0. This fact, together with Proposition 6.34 above implies the fol-
lowing necessary condition of optimality, which is in fact a form of the so-called Pontryagin
Maximum Principle.

Theorem 6.35 Assume that Hypothesis ?? hold. Assume also that ĉ ∈ A(k0) is optimal
for the problem (Pσ) and let k̂ be the corresponding optimal state. Then, for a.e. t ≥ 0,

ĉ (t)1−σ

1− σ
− ρV

(
k̂ (t)

)
+ k̂′ (t)V ′

(
k̂ (t)

)
k̂′ (t) = 0

i.e.

rk̂ (t)V ′
(
k̂ (t)

)
−ĉ (t)V ′

(
k̂ (t)

)
+

ĉ (t)1−σ

1− σ
= ρV

(
k̂ (t)

)

and also

−ĉtV
′
(
k̂ (t)

)
+

ĉ (t)1−σ

1− σ

= sup
c≥0

{
−cV ′

(
k̂ (t)

)
+

c1−σ

1− σ

}
.

In particular V admits first derivative and

ĉ (t)−σ = V ′
(
k̂ (t)

)

Proof. It is enough to apply the same argument of [5] and [39] (see also [4, p.133-136])
adapted to this case. We omit it for brevity.

The above Theorem 6.35 gives the feedback formula we need. Now we show how to
calculate the optimal control in this case.

First of all we observe that the function v(k) = ak1−σ, with a = 1
1−σ

[
ρ−r(1−σ)

σ

]−σ

, is

a classical solution of the HJB equation (45), it is enough to make a substitution. Then,
using Theorem 6.24 we get that v ≥ V . Moreover, if we consider the feedback control

c (s) = v
′
(k (s))−1/σ = [a (1− σ)]−1/σ k (s) =

ρ− r (1− σ)

σ
k (s)

then the closed loop equation

k′ (s) = rk (s)− v
′
(k (s))−1/σ = −ρ− r

σ
k (s) ;

k (0) = k0
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is linear and has a unique solution

k (s) = es(r−ρ)/σk0 ≥ 0

so that
c (s) = [a (1− σ)]−1/σ es(r−ρ)/σk0 ≥ 0.

Since the couple (k, c) satisfy the admissibility constraints, then it is optimal. For economic
comments see [6].

6.7 DP method in the optimal investment problem

Let us consider the classical optimal investment problem with quadratic adjustment costs
and a linear technology:

max J(k0;u) = max

∫ +∞

0

e−ρt[ak(t)− bu(s)− c

2
u2(t)]dt,

k̇(t) = u(t)− µk(t), k(0) = k0,

a > 0, b > 0, c > 0, subject to the usual constraint k ≥ 0. u denotes investments and k
is the stock of capital.

Set a = a/(ρ + µ), the expected return from a unit of capital. Assume that a ≥ b
(which means that investments are profitable) and choose measurable control strategies
u such that t 7→ e−ρtu2(t) are square integrable and the state constraint k ≥ 0 is satisfied:
this means that

Uad (k0) =
{
u ∈ L2

ρ (0,+∞) : k (s; k0, u) ≥ 0, s ≥ 0
}
.

The value function is
V (k0) = sup

u∈Uad(k0)

J(k0; u)

The current value Hamiltonian is defined as

H0CV (k, p, u) = (−µk + u)p+ ak − bu− c

2
u2 = [−µkp+ ak] +

[
up− bu− c

2
u2
]

def
= H01CV (k, p) +H02CV (p;u)

and the maximum value Hamiltonian as

H0(k, p) = sup
u∈R

H0CV (k, p;u) = [−µkp+ ak] +

[
(p− b)2

2c

]
def
= H01(k, p) +H02(p),

where the maximum point is reached at u = (p− b)/c. The HJB equation is

ρv(k) = −µkDv(k) + ak +H02(Dv(k)); k ≥ 0. (46)

We observe that a regular solution of it is the linear function

v(k) = ak +
1

ρ
H02 (a) .
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Similarly to the previous example it can be proved that the value function V is the unique
viscosity solution (here also classical) of the HJB equation (46) so v = V . The optimal
control can the n be easily found by solving the closed loop equation. We give the explicit
form of the optimal couple in the exercise below suggesting an alternative method to
compute it.

Exercise: substitute k (s; k0, u) inside the functional and get directly that the opti-
mal control-state trajectory for the problem is

u∗(t) ≡ 1

c
[a− b] , k∗(t) =

u∗

µ
+ e−µt

[
k0 − u∗

µ

]
, (47)

and the value function is

V (k0) =
ak0
ρ+ µ

+
1

2cρ
[a− b]2 .

7 Optimality Conditions: the Maximum principle

The problem of finding “good” (i.e. that can be handled in a big variety of cases) opti-
mality conditions is the key point of all optimization problems. In fact also Dynamic Pro-
gramming gives also optimality conditions (see e.g. Theorem 6.24), but we are interested
here to more classical optimality conditions that are in a sense the infinite dimensional
analogous of the Kuhm-Tucker conditions (obtained by the Lagrange multiplier method):
the Pontryagin Maximum Principle (PMP). This is the most popular optimality condition
and in fact the name PMP is now more or less a synonymous of Necessary Optimality
Conditions for Optimal Control Problems. As for the Dynamic Programming we will not
give a complete treatment of it: we will just recall the PMP in a special case and show
how to apply it to our examples.

We start by the discrete time case and then we pass to the continuous time case.

7.1 PMP: discrete time case

We derive a version of the Pontryagin Maximum Principle for a very simple control prob-
lem, where controls and trajectories are real valued (respectively, c(t) ∈ R, x(t) ∈ R) and
no constraints are assumed. We indeed maximize the functional

J (t0, x0; c (·)) =
T−1∑
t=0

f0 (t, x(t), c(t)) + φ(x(T ))

under the constraints

x (t+ 1) = f(t, x (t) , c(t)) ∀t = 0, 1, .., T − 1, (48)

subject to the initial condition
x (t0) = x0.
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For simplicity we set t0 = 0 so T = {0, 1, . . . , T − 1}. Rather than thinking of controls
and trajectories as sequences, we consider them as vectors in RT

c = (c(0), c(1), .., c(T − 1)), x = (x(1), .., x(T − 1), x(T )),

Under this perspective, the problem is a static optimization problem in 2T variables, with
T equality constraints given by (48). The problem can be solved by means of Lagrange
Theorem, provided the assumptions of the theorem hold, where the Lagrangian is built
by introducing the T multipliers

p = (p(1), .., p(T − 1), p(T ))

as follows

L(x, c,p) =
T−1∑
t=0

f0 (t, x(t), c(t)) + φ(x(T ))−
T−1∑
t=0

p(t+ 1) (x(t+ 1)− fD (t, x(t), c(t)))

If (x∗, c∗) is the solution to the problem, then necessarily there exists a vector p∗∈ RT

such that for all t = 0, 1, . . . , T − 1 one has




L′
x(t)(x

∗, c∗,p∗) = 0

L′
c(t)(x

∗, c∗,p∗) = 0

L′
p(t)(x

∗, c∗,p∗) = 0

The Maximum principle is nothing but Lagrange theorem rephrased into term of the
Hamiltonian function.

The Hamiltonian function. We define as current value Hamiltonian the func-
tion HCV : T × R× R× R→ R

HCV (t, x, p; c)
.
= f0(t, x, c) + pfD(t, x, c), t = 0, .., T − 1

(note that here x, c, p are variables in R). Note that

L(x, c,p) =
T−1∑
t=0

f0 (t, x(t), c(t)) + φ(x(T ))−
T−1∑
t=0

p(t+ 1) (x(t+ 1)− fD (t, x(t), c(t)))

=
T−1∑
t=0

HCV (t, x(t), c(t), p(t+ 1))−
T−1∑
t=1

p(t+ 1)x(t+ 1) + φ(x(T ))

Hence the necessary conditions may be written as




p(t) = H ′
x(t, x(t), c(t), p(t+ 1))

p(T ) = φ′
x(x(T ))

H ′
c(t, x(t), c(t), p(t+ 1)) = 0

x(t+ 1) = H ′
p(t, x(t), c(t), p(t+ 1))
x(0) = x0

t = 1, .., T − 1
t = T

t = 0, .., T − 1
t = 0, .., T − 1

(49)

where we added the initial condition on the trajectory (note that the last T +1 equations
are the state equation(s)).
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Theorem 7.1 (Pontryagin Maximum Principle) Assume (x∗(t), c∗(t)) is an optimal cou-
ple for the assigned problem and let H be defined as above. Then there exists a vector
p∗ = (p∗(1), .., p∗(T )), such that the system (49) is satisfied.

Remark 7.2

1. The function p(t) is often called adjoint variable or costate.

2. The condition H ′
c(t, x(t), c(t), p(t)) = 0 is indeed generalized by

c(t) ∈ argmax {H(t, x(t), c, p(t+ 1)) : c ∈ R} , for all t ∈ T

3. If the objective functional is of type

J (c (·)) =
T∑
t=0

l (t, x(t), c(t))

then the problem has horizon T + 1 and zero final objective ϕ ≡ 0, so that the final
condition on the costate is p(T + 1) = 0.

4. In the infinite horizon case still the above conditions are necessary but without the
terminal condition on the costate p.

5. The theorem gives necessary conditions of optimality. Nevertheless (49) turns to be
sufficient under some concavity properties of the Hamiltonian, as we see next.

Theorem 7.3 (Sufficient condition of optimality). Assume that the triple (x(t), c(t), p(t))
satisfies the conditions (49) of the Maximum Principle, and assume H(t, x, c, p(t)) is
concave with respect to (x, c) for every t. Then the triple (x(t), c(t), p(t)) is optimal.
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Exercises

1. Maximize
2∑

t=0

(1 + x(t)− c2(t)) + ϕ(x(3))

under the condition
{

x (t+ 1) = x (t) + c(t) t=′,∞,∈
x (0) = 0,

when:

(a) ϕ(x) = x

(b) ϕ(x) = −x2

Solution. The horizon is T = 3; the Hamiltonian H(t, x, c, p) = 1+x− c2+p(x+ c),

t=′,∞,∈. Note that H is concave in (c, x) so that (PMP) gives necessary and
sufficient conditions.

(a) Since
H ′

x = 1 + p; H ′
c = −2c+ p; H ′

p = x+ c; ϕ′ = −x2

the Hamiltonian system is




p(t) = 1 + p(t+ 1) t=∞,∈
p(3) = 1 t = 3

−2c(t) + p(t+ 1) = 0 t=′,∞,∈
x (t+ 1) = x (t) + c(t) t=′,∞,∈

x (0) = 0 t = 0

which soluton is

p∗(3) = 1, p∗(2) = 1 + p∗(3) = 2, p∗(1) = 1 + p∗(2) = 3

c∗(0) =
p∗(1)
2

=
3

2
, c∗(1) =

p∗(2)
2

= 1, c∗(2) =
p∗(3)
2

=
1

2

x∗(1) = x(0) + c∗(0) =
3

2
, x∗(2) = x∗(1) + c∗(1) =

5

2
, x∗(3) = x∗(2) + c∗(2) = 3

(b) Here the final objective is ϕ = −x2, so that ϕ′ = −2x and the final condition
on the costate is p(4) = −2x(3).The PMP gives

p(3) = −2x(3), p(2) = 1− 2x(3), p(1) = 2− 2x(3)

c(0) = 1− x(3), c(1) =
1

2
− x(3), c(2) = −x(3)

x(1) = 1− x(3), x(2) =
3

2
− 2x(3), x(3) =

3

2
− 3x(3)
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so that

x∗(1) =
5

8
, x∗(2) =

3

4
, x∗(3) =

3

8

p∗(3) = −3

4
, p∗(2) = −1

4
, p∗(1) =

5

4

c∗(0) =
5

8
, c∗(1) =

1

8
, c∗(2) = −3

8

2. Maximize
3∑

t=0

(1 + x(t)− c2(t))

under the condition {
x (t+ 1) = x (t) + c(t) t=′,∞,∈

x (0) = 0,

Solution. With reference to the previous exercise, now the horizon is T = 4, the final
objective ϕ ≡ 0, so that the final condition on the costate is p(4) = 0. The solution
is

p∗(4) = 0, p∗(3) = 1, p∗(2) = 2, p∗(1) = 3

c∗(0) =
3

2
, c∗(1) = 1, c∗(2) =

1

2
, c∗(3) = 0

x∗(1) =
3

2
, x∗(2) =

5

2
, x∗(3) = 3, x∗(4) = 3

3. Maximize
2∑

t=0

(1 +−x2(t)− 2c2(t))

under the condition {
x (t+ 1) = x (t)− c(t) t=′,∞,∈

x (0) = 5,

Solution. PMP gives necessary and sufficient conditions of optimality since the
Hamiltonian H = −x2 − 2c2 + p(x− c) is concave in (x, c)





p(t) = −2x(t) + p(t+ 1) t=∞,∈
p(3) = 0 t = 3

−4c(t)− p(t+ 1) = 0 t=′,∞,∈
x (t+ 1) = x (t)− c(t) t=′,∞,∈

x (0) = 5 t = 0

that implies

p∗(3) = 0, p∗(2) = , p∗(1) =

c∗(0) =
25

11
, c∗(1) =

10

11
, c∗(2) = 0,

x∗(1) =
30

11
, x∗(2) =

20

11
, x∗(3) =

20

11
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7.2 PMP: continuous time case

We now pass to the continuous time case. We need more assumptions listed here.

Hypothesis 7.4 The functions f0 and fC satisfy the assumptions of Theorem 6.19 and
moreover are Fréchet differentiable in x.

Hypothesis 7.5 There are no state constraints, so X = Rn.

Theorem 7.6 (PMP) Assume that Hypotheses 3.12, 7.4, 7.5 hold for problem (P ) and let
T < +∞. Fix (t0, x0) ∈ [0, T ]×Rn and let (x(·), u(cdot)) be an optimal state-control couple
for problem (P ) starting at (t0, x0). Then there exists an absolute continuous function
p : [t, T ] 7→ Rn such that:

1. p is a solution of the backward O.D.E.

p′ (s) = − [fC,x (s, x (s) , c (s))]
∗ p (s)− f0,x (s, x (s) , c (s)) ; s ∈ [t, T ] (50)

p (T ) = Dφ (x (T )) ;

2. for every s ∈ [t, T ]

c (s) ∈ argmax
c∈C

{HCV (s, x (s) , p (s) ; c)} (51)

Proof. see e.g [42].

Remark 7.7 Observe that equation (51) is the precise statement of Pontryagin Maxi-
mum Principle and it is perfectly analogous to the condition (ii) of Theorem 6.24 with
p (s) in place of DxV (s, x (s)). Here p(·) is obtained as a solution (better if unique) of
the backward O.D.E. (50). Note that the final condition p (T ) = Dφ (x (T )) is coherent
with the interpretation of p (s) as DxV (s, x (s)). Finally we recall that the final condi-
tion p (T ) = Dφ (x (T )) is called trasversality condition, the reason of this name is due
to the fact that, in the variational formulation, it states the orthogonality of the optimal
trajectory to the final target set (see e.g. [19], [23]).

Remark 7.8 The auxiliary variable p(·) plays the role of a Lagrange multiplier in infinite
dimension here. It will be called the co-state variable (or the dual variable) of the problem
(P ) and it can be interpreted in many economic problems (like the ones in our examples)
as the shadow price of the capital good. Due to its important meaning we will generally be
interested also in finding p. So we can talk about an optimal triple (x(·), p(·), c(·)) when
(x(·), c(·)) is an optimal couple and p(·) is the corresponding co-state.

Remark 7.9 The idea of the proof comes from the multiplier method used in static opti-
mization. In fact the above Theorem is just a special case of the wide quantity of necessary
conditions for dynamic optimization problems, see on this [31], [37], [27].
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The above conditions become sufficient conditions under some more assumptions, e.g.
concavity of the problem, see on this [37]. Here we limit ourselves to the following result

Theorem 7.10 Assume that Hypotheses 3.12, 7.4, 7.5 hold for problem (P ) and let T <
+∞. Fix (t0, x0) ∈ [0, T ] × Rn and let (x(·), c(·)) be an admissible state control couple
for problem (P ) starting at (t0, x0). Assume that f0 and fC are concave in (x, c) and that
there exists an absolute continuous function p : [t, T ] 7→ Rn such that:

1. p(·) is a solution of the backward O.D.E.

p′ (s) = − [fC,x (s, x (s) , c (s))]
∗ p (s)− f0,x (s, x (s) , c (s)) ; s ∈ [t, T ] (52)

p (T ) = Dφ (x (T )) ;

2. for every s ∈ [t, T ]

c (s) ∈ argmax
c∈C

{HCV (s, x (s) , p (s) ; c)} (53)

Then (x(·), c(·)) is optimal.

Proof. see e.g [42].

Remark 7.11 The PMP substantially says that, to find optimal couples we need to solve
the system

x′ (s) = f (s, x (s) , c (s)) ; x (t0) = x0

p′ (s) = − [fC,x (s, x (s) , c (s))]
∗ p (s)− f0,x (s, x (s) , c (s)) ; p (T ) = Dφ (x (T ))

c (s) ∈ argmax
c∈C

{HCV (s, x (s) , p (s) ; c)} .

that can be rewritten as (note that HCV is always differentiable in p, and, thanks to
Hypothesis 7.4 it is also differentiable in x)

x′ (s) =
∂

∂p
HCV (s, x (s) , p (s) ; c (s)) ; x (t0) = x0 (54)

p′ (s) = − ∂

∂x
HCV (s, x (s) , p (s) ; c (s)) ; p (T ) = Dφ (x (T ))

c (s) ∈ argmax
c∈C

{HCV (s, x (s) , p (s) ; c)} .

If we know that, for every (t, x, p) there exists an interior maximum point of HCV (t, x, p; c),
and that HCV (t, x, p; c) is differentiable with respect to c, then the third condition can be
substituted by the weaker one

∂

∂c
HCV (s, x (s) , p (s) ; c (s)) = 0.

Moreover, since HCV (s, x (s) , p (s) ; c (s)) = HMAX (s, x (s) , p (s)), it can be proved that,
if also HMAX is differentiable the system (54) is equivalent to
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x′ (s) =
∂

∂p
HMAX (s, y (s) , p (s) ; c (s)) ; x (t0) = x0 (55)

p′ (s) = − ∂

∂x
HMAX (s, x (s) , p (s) ; c (s)) ; p (T ) = Dφ (x (T ))

c (s) ∈ argmax
c∈C

{HCV (s, x (s) , p (s) ; c)} .

Such system will be called Hamiltonian system of our control problem (P ).
Solving such system will give candidates (y, p, u) for being an optimal triple. Note that

it is hard to solve such systems, due to the trasversality condition p (T ) = Dφ (x (T )). If
we have an initial condition on p(·) then we could use standard existence and uniqueness
theorems for systems of ODE. Here the trasversality condition is backward and moreover
it depends on the final value of the other variable of the system.

Remark 7.12 Autonomous infinite horizon case with discount. In this case f0(t, x, c) =
e−ρtf1(x, c) and fC(t, x, c) does not depend on t. The co-state equation becomes

p′ (s) = [ρ− [fC,x (x (s) , c (s))]
∗ p (s)− f1,x (x (s) , c (s)) ; s ∈ [t, T ] (56)

p (+∞) = ???????

The problem is the condition at infinity. There is no good condition. Under some additional
assumptions there are some necessary conditions at infinity but there is no universal way
to set up them. We mention two of them:

lim
t→+∞

e−ρtp(t) = 0, lim
t→+∞

e−ρtx(t) · p(t) = 0

but also other are possible. See e.g. on this [2, 10, 28].
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[12] H. Brezis Lécons d’analyse fonctionnelle, Masson, Paris 1983.

[13] G. Carlier. A general existence result for the principal agent problem with adverse
selection, J. of Math Econ., 35, (2001), 129-150.

[14] Castagnoli Peccati, La matematica in Azienda.

[15] L. Cesari,Optimization Theory and Applications, Springer–Verlag, New York,
1983

[16] F. Clarke, Optimization and Nonsmooth Analysis, John Wiley & sons, New
York, 1983.

63



[17] M. G. Crandall, H. Ishii and P. L. Lions, User’s guide to viscosity solutions of second
order partial differential equations, Bull. A.M.S., 27,1, (1992), 1–67.

[18] D. Fiaschi e F. Gozzi. Work in preparation.

[19] W.H. Fleming and R.W.Rishel, Deterministic and stochastic optimal con-
trol, Springer, New York 1975.

[20] W.H. Fleming and H.M.Soner, Controlled Markov processes and viscosity
solutions, Springer-Verlag, Berlin, New-York, 1993.

[21] G. Freni, F. Gozzi, N. Salvadori, On a multisector AK model with endogenous growth,
Preprint Dipartimento di Scienza Economiche, Università di Pisa, Febbraio 2001.

[22] G. Gandolfo Economic Dynamics, Springer-Verlag, Berlin, New-York, 1993.

[23] A. Guerraggio, S. Salsa, Metodi Matematici per l’economia e le scienze
sociali, Giappichelli, 1997.

[24] Hadley and Kemp.

[25] R.F. Hartl, S.P. Sethi and R.G Vickson, A Survey of the Maximum Principles for
Optimal Control Problems with State Constraints, SIAM Review, 37, (1995), 181-218.

[26] H.D. Kurz and N. Salvadori, Theory of Production: A Long-Period Anal-
ysis. Cambridge, New York, Melbourne: Cambridge University Press 1995.

[27] D. Leonard and N. Van Long Optimal control theory and static optimiza-
tion in economic models, Cambridge University Press, 1992.

[28] P. Michel Some Clarifications on the Transversality Condition, Econometrica, Vol.
58, No. 3 (May, 1990), 705-723.

[29] L. Montrucchio, G. Cugno, Scelte intertemporali, Giappichelli Editore, 1998.

[30] J. von Neumann, A Model of General Economic Equilibrium, Review of Economic
Studies 13, (1945), 1-9.

[31] L. Neustadt, Optimization, a Theory of Necessary Conditions, Princeton
University press, Princeton, NJ, 1976.

[32] L.S. Pontryagin, V.G. Boltyanskii, R.V Gamkrelidze and E.F. Mischenko, The
Mathematical Theory of Optimal Processes, Wiley-Interscience, New York,
1962.

[33] S. Rebelo, Long Run Policy Analysis and Long Run Growth. Journal of Political
Economy 99, (1991), 500-521 .

[34] R.T. Rockafellar, State Constraints in convex control problems of Bolza, SIAM J.
Control Optim. 10, (1972), 691-715.

64



[35] R.T. Rockafellar, Convex Analysis, Princeton University press, Princeton, NJ,
1976.

[36] N. Salvadori, A Linear Multisector Model of ”Endogenous” Growth and the Problem
of Capital, Metroeconomica, 49, 3, October 1998.

[37] A. Seierstad and K. Sydsaeter, Optimal Control Theory with Economic
Applications. North Holland, Amsterdam, 1987.

[38] N. Stokey and Lucas, Recursive methods in Economic Dynamics. North Hol-
land, Amsterdam, 1987.

[39] E. Tessitore, Optimality Conditions for Infinite Horizon Optimal Control Problems,
Bollettino UMI, 7, (1995), 795-814.

[40] A. Takayama, Mathematical Economics. Cambridge University Press, Cam-
bridge, New York, Melbourne, 1974.

[41] K. Yosida Functional Analysis, sixth edition Springer-Verlag, Berlin, New-York,
1980.

[42] J. Zabczyk, Mathematical control theory: an introduction, Birkäuser,
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