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ON PHASE-TYPE DISTRIBUTIONS IN RUIN THEORY 

 

Pietroluongo Mariafortuna1 

 

 

Abstract 

 

The aim of this paper is to serve as an introduction to the use of phase-type distributions 

and at the same time to outline their use in ruin theory. Phase-type distributions, a 

particular class of matrix-exponential distributions, have the important advantage of 

being suitable for approximating most of other distributions as well as being 

mathematically tractable.  

After a review on phase-type distributions and their properties, a possible use in ruin 

theory is illustrated. Modelling both interarrival claim times and individual claim sizes 

with this class of distributions an explicit formula for the probability of ultimate ruin is 

given. 
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1. Introduction 

 

A phase-type distribution is defined as the distribution of absorption times of certain 

Markov jump processes. They constitute a class of distributions which seems to strike a 

balance between generality and tractability. Indeed, any positive distribution may be 

approximated arbitrarily closely by phase-type distributions whereas exact solutions to 

many complex problems in stochastic modeling can be obtained either explicitly or 

numerically. 

The use of phase-type distributions has led to a wide range of stochastic modeling 

applications which are algorithmically tractable in areas as diverse as queueing theory, 

ruin theory, telecommunications, biostatistics, drug kinetics, and survival analysis. 

The family of phase-type distributions has gained widespread attention in the area of 

stochastic modelling, particularly when Markov processes are involved, since they are 

one of the most general classes of distributions permitting a Markovian interpretation. 

There are several reasons to use phase-type distributions. First of all, because they are 

quite flexible in terms of their possible shapes and because their inherent mathematical 

and numerical tractability. 

Moreover, phase-type distributions are dense in the set of all distributions, so that - in 

principle - one can replace any (non-phase-type) distribution with a suitable phase-type 

approximation. It should be taken into account that, since they have exponentially 

decreasing tails, they can not be used for large or extreme value problems. 

One of the most useful features of this class of distributions is that they allow for the use 

of matrix-analytic methods in stochastic models. Using these methods, numerical 

integrations arising in the study of many stochastic models are replaced by matrix 

operations that develop naturally in the analysis of structured Markov chains, being 

matrix exponentials nowadays easy to calculate. Many results using phase-type 

methodologies have been generalized into the broader class of matrix-exponential 

distributions, with a rational Laplace transform. 

A short bibliographic review could begin with Erlang (1909), but the major contribution 

is due to Neuts (1981, 1995). Phase-type distributions are used in many different fields 

of applications, so there is a large number of papers about this topic. Concerning risk 

theory, Asmussen (2000, 2003), Asmussen and Bladt (1996) and Bladt (2005) have 

given many results using phase-type methodologies. More recently, among others, we 

can mention Hipp (2006), Ahn and Badescu (2007) and Jang (2007). 

In the next Section 2 we recall the fundamentals of continuous time Markov processes 

with finite state spaces. In section 3 we we introduce the Phase – Type distribution and 

the notation 

we use further in the paper, giving some examples in section 4. The last section 5 

contains some applications in risk theory. 

 

 

2. Markov jump processes 

 

Consider a continuous time stochastic process    
 0ttX  taking on values in a set of 

non-negative integers (state space). 
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The process    
 0ttX  is a continuous time Markov chain if for all s,t0 and 

nonnegative integers i, j, x(u), 0u<s, 

 

Prob {X(t+s)=j  X(s)=i, X(u)=x(u), 0u<s} = Prob {X(t+s)=j  X(s)=i} . 

 

In other words, a continuous time Markov chain is a stochastic process having the 

Markovian property that the conditional distribution of the future state at time t+s, given 

the present state at s and all past states, depends only on the present state and is 

independent of the past. 

For our purposes, we consider a finite state space E={1,2,…,n}. Let T1, T2, … denote 

the times where    
 0ttX  jumps from one state to another, being T0=0. 

Then the discrete time process    NnnY 
, where Y(n)=X(Tn) is a Markov chain 

describing the visited states with transition matrix  
Eji,ijq


Q , where qij is the 

probability that process goes from state i to state j. 

If Y(n)=i, τi=Tn+1-Tn is the amount of time that the process stays in state i before making 

a transition into a different state; then for all s,t 0 

 

Prob{τi>s+t  τi>s} = Prob{τi>t} . 

 

Hence, the random variable τi is memoryless and must be exponentially distributed with 

a certain parameter λi. 

So, a continuous time Markov chain is a stochastic process that moves from state to 

state in accordance with a (discrete time) Markov chain, but it is such that the amount of 

time it spends in each state, before proceeding to the next state, is exponentially 

distributed. In addition the amount of time the process spend in state i, and the next state 

visited, must be independent random variables. 

Since λidt is the probability that the process leaves state i during the infinitesimal time 

interval [t,t+dt), it follows that 

 

λij = λi qij  (ij) 

 

is the intensity of jumping from state i to state j. 

Define the intensity matrix or infinitesimal generator of the process as 

 

 
Eji,ij 

Λ  , 

 

where 

λij = λi qij  (ij) , 





ih

ihii  (i=j) . 

 

Denote by qt
ij the probability that a Markov chain, presently in state i, will be in state j 

after an additional time t, that is 
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qt
ij = Prob {X(t+s)=j  X(s)=i} , 

 

and by  
Eji,

tt

ji,
q


Q  the corresponding transition matrix. 

Then 

)texp(
t

ΛQ   , 

 

where the exponential of a pp matrix Λ is defined by the series expansion 









0n

n

!n
)exp( . 

 

Let fii be the probability that, starting in state i, the process will ever reenter state i. 

Defining with  i)0(X1n,...,1k,i)k(X;i)n(XobPrf
n

ii
  (with fii

0=0) the 

probability that starting in i the first transition into i occurs at time n, it follows that 

 







1n

n

iiii ff  . 

 

If fii=1, the state is recurrent, otherwise it is transient. 

If state i is recurrent then, starting from state i, the process will reenter state i infinitely 

often with probability 1. 

If state i is transient then, starting in state i, the number of periods in which the process 

is in state i has a geometric distribution with finite mean 1/(1–fii). 

Equivalently, state i is recurrent if 


1n

n

iiq  and transient if 


1n

n

iiq . 

So, a transient state will only be visited a finite number of times (hence the name 

transient) and in a finite state Markov chain not all states can be transient. 

A special case of a recurrent state is if qij=0 for all ij, implying λij=0 for all j, (or qii=1) 

then i is absorbing. 

 

 

3. Phase-type distributions 

 

A phase-type distribution of order p is defined as the absorption time distribution in a 

finite state Markov process with p transient states and one absorbing state. 

Let    
 0ttX  be a Markov jump process on a finite state space Ẽ=E{p+1}, 

E={1,2,…,p}, where states 1, …, p are transient and state p+1 is absorbing. This implies 

that the intensity matrix of    
 0ttX  can be written in block partitioned form as: 

 











0'0

tT
Λ  
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where T is a pp dimensional matrix, t and 0 are two vectors, with dimensions p1. 

Since the intensity matrix of a non terminating Markov process has rows that sum to 

zero, it is: 

 

t+Te=0    t=-Te where e=(1, 1, …, 1)’ 

 

The interpretation of vector t is as the exit rate (exit from the transient subset of states 

E) vector, since the intensities ti are the intensities by which the process jumps to the 

absorbing state. 

Now we define the initial probabilities as πi=Prob{X0=i}, iE, and Prob{X0=p+1}=0 

meaning that the process cannot initiate in the absorbing state. 

So, the vector π’=(π1,…, πp) describe the initial distribution of    
 0ttX  over the 

transient states only. 

 

Definition 

The distribution of the absorbing time τ 

 

τ = inf {t0  Xt=p+1} 

 

is said to be a phase-type (PH) distribution with representation (π, T) 

 

τ ~ PH (π, T) 

 

of order p. 

 

 

 
The phase diagram of a phase type distribution with 3 phases, E={i,j,k} 

 

 

 

Recalling that the matrix-exponential eΛ is defined by the standard series expansion: 

 







0n

n

!n
e

ΛΛ
 

 

it is possible to show the following basic analytical properties of the phase-type 

distribution τ~PH(π, T): 

i 

j 

k 

tij 

tji 

tik 

tki 

tjk tkj 

tj 

πj 

πk 

tk 

πi 

ti 
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Theorem 1 

The density function is:   f(x) = π’ exp(Tx)t . 

 

Theorem 2 

The distribution function is:  F(x) = 1-π’ exp(Tx)e . 

 

Theorem 3 

The n-th moment is:   eTπ
nn

0

nn
'!n)1()x(dFx)E(





   . 

The moment generating function is: tTIπ
1

0

ss
)s(')s(dFe)e(E





   

(with Ipp) . 

 

Theorem 4 

The Laplace-Stieltjes transform is: tTIπ
1

0

s
)s(')s(dFe]s[F̂





   (with Ipp) . 

 

From theorem 2 derives that a phase-type distribution is light-tailed, since the tail of a 

phase-type distribution is exponentially decreasing. 

Recalling that one of the advantages of using a phase-type distribution is that any 

distribution on positive axis can be well approximated by a phase-type distribution, 

from the last property it follows that for heavy-tailed distribution more attention is 

required. 

 

 

4. Examples of phase-type distributions 

 

By convenient choices of parameters, it is possible to obtain different distributions like 

exponential, Erlang, hiperexponential and Coxian. 

 

Example 1 

The random variable X~exp(λ) can be seen as a PH(π,T) with 

 

π = (1) and T=(λ) 

 

So, the class of exponential distribution is the class of phase-type distributions with p=1. 

 

Example 2 

The random variable 



p

1k

kp XS , where Xk~exp(λ) are i.i.d., has an Erlang distribution. 

The density function of Sp is obtained by a convolution of p exponential densities with 

the same parameter λ 
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x
1p

p
e

)!1p(

x
)x(f





  , 

 

and can be represented by the following phase diagram 

 

 
 

 

Then, the distribution of Sp can be interpreted as a PH(π,T) with: 

 

       π’=(1, 0, …, 0), corresponding to E={1, …, p} 
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If 



p

1k

kp XS  has a generalized Erlang distribution, i.e. Xk~exp(λk), then Sp~PH(π,T) 

with  
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Representations of the Erlang random variable are by no means unique, because the 

Xk’s can be summed in any order. So, alternative representations can be obtained 

permuting the states. 

 

Example 3 

Let Xk~exp(λk), with k=1, …, p, independent random variables. The hyperexponential 

distribution Hp is defined as a mixture of the p exponential distributions, with density: 

 

1 
π1=1 

2 
λ 

3 
λ 

p+1 
λ … 
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p

1k

x

kk
ke   where αk>0 (k=1, …,p) and 1

p

1k

k 


. 

 

Then, Hp~PH(π,T) with representation 

 

    π’=(π1, π2, …, πp) 
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and the phase diagram is: 

 

 
 

 

Example 4 

Let Xk~exp(λk), with k=1, …, p, independent random variables. The Coxian distribution 

is defined as the sum SN of a random number N (N=1, …,p) of Xk. 

The Erlang distribution is a special case of a Coxian distribution. 

The class of Coxian distributions is interpreted as the class of phase-type distributions 

with representation: 

 

  π’=(1, 0, …, 0), corresponding to E={1, …, p} 
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and phase diagram 

 

 
 

 

 

5. Phase-type distributions in ruin theory 

 

Phase-type distributions can be used in risk theory to model interarrival times as well as 

claim sizes. 

Let Zn (n1) be a sequence of nonnegative independent random variables representing 

the interarrival times, or the time between the (n-1)th and n-th event (claim). Zn have 

common distribution function F() and density f(). 

If S0=0 and 



n

1k

kn ZS  (n1) it follows that Sn is the time of the n-th claim. The 

number of claims by time t is N(t)=max{nSnt}. The counting process    
 0ttN  is 

called a renewal process. 

For applications in ruin theory, it is important to obtain the renewal density g(x) of 

   
 0ttN , which is the probability of a claim during the infinitesimal time interval [x, 

x+dx). Denoting by G(x) the renewal distribution function, it is 

 







1n

n*
)x(F)x(G   






1n

n*
)x(f)x('G)x(g  

 

The explicit calculation of the renewal density is usually not simple, but if F() is phase-

type the problem has an analitically tractable solution. 

It is possible to prove that if the interarrival times are phase-type with representation 

(π,T), it follows that the renewal density is: 

 

tπ
tπT x)'(

e')x(g


  . 

 

1 
π1 

2 
λ1-t1 

p-1 … 3 
λ2-t2 

p 
λp-1-tp-1 

t1 t2 t3 tp-1 

tp λ3-t3 λp-2-tp-2 
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In fact, let    
 0s

(k)
sX be the Markov process governing the phase-type distribution of 

Zk and define    
 0ssJ  by joining the processes    

 0s

(k)
sX : 

 

         1

(1)
Z,0s,sXsJ   

 

         2111

(2)
ZZ,Zs,Z-sXsJ   

 

         3212121

(3)
ZZZ,ZZs,Z-Z-sXsJ   

 

  ….. 

 

      







 







n

1k

k

1n

1k

k1-n21

(n)
Z,Zs,Z--Z-Z-sXsJ  . 

 

   
 0ssJ  is a new Markov jump process on space state E with two types of transitions 

from i to j. One way is to jump following the process {X(k)(s)}, at the rate tijT, and the 

other way corresponds to a transition from {X(k)(s)} to the next {X(k+1)(s)} at rate ti πj. 

Hence, the intensity matrix of    
 0ssJ  is T+tπ’ and the transition matrix of    

 0ssJ  

is exp(T+tπ’)s. 

At time x the process    
 0ssJ  develops through some process    

 0s

(k)
sX . There is a 

renewal at time x if the phase-type process    
 0s

(k)
sX  makes a transition to the 

absorbing state during [x, x+dx), so by the law of total probability the expression of the 

renewal density at x is 

tπ
tπT x)'(

e')x(g


 . 

▪ 

 

 

Consider the classical Cramèr-Lundberg continuous time risk model that could be 

regarded as a particular case of a renewal (Sparre Andersen) model. 

Let N(t) be the number of claims from an insurance portfolio. It is assumed that N(t) 

(t≥0) follows a Poisson process with mean λ. The individual claim sizes, U1, U2, ... 

independent of N(t), are positive, independent and identically distributed random 

variables with P(x)=Pr{X≤x} distribution function and p(x)=dP(x) individual claim 

amount probability density function. 

The insurer’s surplus process at time t (t≥0) is 

 





)t(N

1j

jUctu)t(W  
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where u=W(0)≥0 is the insurer’s initial surplus, c the premium rate per unit time. 

The time of ruin T is the first time that the surplus becomes negative defined by 

 

 0)t(WtinfT   , 

 

with T=+∞ if W(t)≥0 for all t≥0 (i.e., if ruin does not occur). 

The probability of ultimate ruin as function of the initial surplus u is 

 

 u)0(WTPr)u(   . 

 

In literature it is well known that obtaining an explicit formula for ψ(u) is not simple. In 

fact, only for particular distributions of individual claim amount it is possible to find an 

exact solution. 

The class of phase-type distributions is the one within computationally tractable exact 

forms of the ruin probability ψ(u) can be obtained. 

In the hypotheses of phase-type distribution for individual claim size with 

representation (π,T) 

 

eπ
Tx

e'1)x(P    tπ
Tx

e')x(p   

 

it is possible to show that 

 

eπ
tπT u)'(

e')u( 

  . 

 

The i-th component of the vector π- is the probability that a Markov jump process 

underlying the phase-type claims downcrosses level u in state i when the surplus 

process jumps to a level below u for the first time. Since there is a positive probability 

that    
 0ttW  never goes to a level below u, the distribution π- is defective. 

In this case, when the claims are phase-type, also the process underlying the descending 

ladder heights is a terminating phase-type renewal process with interarrival distribution 

PH(π-, T). 
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